dc.contributor.author | REPEŞCO, Vadim | |
dc.date.accessioned | 2024-06-14T11:42:51Z | |
dc.date.available | 2024-06-14T11:42:51Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | REPEŞCO, Vadim. Qualitative analysis of polynomial differential systems with the line at infinity of maximal multiplicity: exploring linear, quadratic, cubic, quartic, and quintic cases. In: Acta et commentationes (Ştiinţe Exacte și ale Naturii), 2023, nr. 2(16), pp. 111-117. ISSN 2537-6284. | en_US |
dc.identifier.issn | 2537-6284 | |
dc.identifier.uri | https://doi.org/10.36120/2587-3644.v16i2.111-117 | |
dc.identifier.uri | http://repository.utm.md/handle/5014/27413 | |
dc.description.abstract | This article investigates the phase portraits of polynomial differential systems with maximal multiplicity of the line at infinity. The study explores theoretical foundations, including algebraic multiplicity definitions, to establish the groundwork for qualitative analyses of dynamical systems. Spanning polynomial degrees from linear to quintic, the article systematically presents transformations and conditions to achieve maximal multiplicity of the invariant lines at infinity. Noteworthy inclusions of systematic transformations, such as Poincar´e transformations, simplify analysis and enhance the accessibility of phase portraits. | en_US |
dc.description.abstract | Acest articol investighează portretele de faz ale sistemelor diferenţiale polinomiale cu multiplicitatea maximă a liniei de la infinit. Studiul explorează fundamentele teoretice, inclusiv definiţiile multiplicităţii algebrice, pentru a stabili baza pentru analize calitative ale sistemelor dinamice. Acoperind grade polinomiale de la liniar la quintic, articolul prezintă în mod sistematic transformări ş i condiţii pentru a obţine multiplicitatea maximală a dreptei invariante de la infinit. Incluziile notabile ale transformărilor sistematice, cum ar fi transformările Poincare, simplifică analiza şi îmbunătăţesc accesibilitatea portretelor de fază. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Universitatea de Stat din Tiraspol | en_US |
dc.relation.ispartofseries | Acta et commentationes (Ştiinţe Exacte și ale Naturii);2023, nr. 2(16) | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | polynomial differential systems | en_US |
dc.subject | invariant algebraic curve | en_US |
dc.subject | Poincare transformation | en_US |
dc.subject | sisteme diferenţiale | en_US |
dc.subject | curbe algebrice invariante | en_US |
dc.subject | transformarea Poincare | en_US |
dc.title | Qualitative analysis of polynomial differential systems with the line at infinity of maximal multiplicity: exploring linear, quadratic, cubic, quartic, and quintic cases | en_US |
dc.title.alternative | Studiul calitativ al sistemelor diferenţiale polinomiale cu linia de la infinit de multiplicitate maximală: studierea cazurilor liniare, pătratice, cubice, cuartice şi cuintice | en_US |
dc.type | Article | en_US |
The following license files are associated with this item: