IRTUM – Institutional Repository of the Technical University of Moldova

Learning Sentiments from Tweets with Personal Health Information

Show simple item record

dc.contributor.author BOBICEV, Victoria
dc.contributor.author SOKOLOVA, Marina
dc.contributor.author JAFER, Yasser
dc.contributor.author SCHRAMM, David
dc.date.accessioned 2021-04-10T14:35:11Z
dc.date.available 2021-04-10T14:35:11Z
dc.date.issued 2012
dc.identifier.citation BOBICEV, Victoria, SOKOLOVA, Marina, JAFER, Yasser. Learning Sentiments from Tweets with Personal Health Information. In: Advances in Artificial Intelligence: proc. Canadian AI 2012, 28-30 May, 2012, Toronto, Canada, 2012, V. 7310, pp. 37-48. ISBN 978-3-642-30353-1. en_US
dc.identifier.isbn 978-3-642-30353-1
dc.identifier.uri https://doi.org/10.1007/978-3-642-30353-1_4
dc.identifier.uri http://repository.utm.md/handle/5014/14094
dc.description Acces full text: https://doi.org/10.1007/978-3-642-30353-1_4 en_US
dc.description.abstract We present results of sentiment analysis in Twitter messages that disclose personal health information. In these messages (tweets), users discuss ailment, treatment, medications, etc. We use the author-centric annotation model to label tweets as positive sentiments, negative sentiments or neutral. The results of the agreement among three raters are reported and discussed. We then use Machine Learning methods on multi-class and binary classification of sentiments. The obtained results are comparable with previous results in the subjectivity analysis of user-written Web content. en_US
dc.language.iso en en_US
dc.publisher Springer Nature Switzerland en_US
dc.rights Attribution-NonCommercial-NoDerivs 3.0 United States *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject sentiment analysis en_US
dc.subject messages en_US
dc.subject tweets en_US
dc.subject annotations en_US
dc.subject sentiments en_US
dc.title Learning Sentiments from Tweets with Personal Health Information en_US
dc.type Article en_US


Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States

Search DSpace


Browse

My Account