dc.contributor.author | BOBICEV, Victoria | |
dc.contributor.author | SOKOLOVA, Marina | |
dc.contributor.author | JAFER, Yasser | |
dc.contributor.author | SCHRAMM, David | |
dc.date.accessioned | 2021-04-10T14:35:11Z | |
dc.date.available | 2021-04-10T14:35:11Z | |
dc.date.issued | 2012 | |
dc.identifier.citation | BOBICEV, Victoria, SOKOLOVA, Marina, JAFER, Yasser. Learning Sentiments from Tweets with Personal Health Information. In: Advances in Artificial Intelligence: proc. Canadian AI 2012, 28-30 May, 2012, Toronto, Canada, 2012, V. 7310, pp. 37-48. ISBN 978-3-642-30353-1. | en_US |
dc.identifier.isbn | 978-3-642-30353-1 | |
dc.identifier.uri | https://doi.org/10.1007/978-3-642-30353-1_4 | |
dc.identifier.uri | http://repository.utm.md/handle/5014/14094 | |
dc.description | Acces full text: https://doi.org/10.1007/978-3-642-30353-1_4 | en_US |
dc.description.abstract | We present results of sentiment analysis in Twitter messages that disclose personal health information. In these messages (tweets), users discuss ailment, treatment, medications, etc. We use the author-centric annotation model to label tweets as positive sentiments, negative sentiments or neutral. The results of the agreement among three raters are reported and discussed. We then use Machine Learning methods on multi-class and binary classification of sentiments. The obtained results are comparable with previous results in the subjectivity analysis of user-written Web content. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Nature Switzerland | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | sentiment analysis | en_US |
dc.subject | messages | en_US |
dc.subject | tweets | en_US |
dc.subject | annotations | en_US |
dc.subject | sentiments | en_US |
dc.title | Learning Sentiments from Tweets with Personal Health Information | en_US |
dc.type | Article | en_US |
The following license files are associated with this item: