Abstract:
This study aimed to develop an innovative approach to produce an organic antibacterial composite material by combining acrylic paint and acetamide through a simple mixing method. Acetamide, known for its potent antibacterial properties, underwent a thorough evaluation to assess its effectiveness in the composite. The antibacterial properties were evaluated using established methods such as the minimum inhibitory concentration (MIC) and the agar well diffusion test. These tests provided quantitative and qualitative measures of inhibitory activity against two common bacterial strains, namely S. aureus and S. epidermidis. The results showed a clear correlation between the concentration of acetamide in the composite and its antibacterial activity. Higher concentrations of acetamide led to a significant increase in the effectiveness of the composite material against the targeted bacterial strains. In addition to the antibacterial properties, the mechanical and physical properties of the composite material were also analyzed comprehensively. Parameters such as wettability, swelling ratio and chemical structure were thoroughly investigated using Fourier Transform Infrared (FTIR) analysis. This comprehensive characterization enabled a detailed understanding of the behavior and performance of the composite material.