dc.contributor.author | NEGRU, Ion | |
dc.date.accessioned | 2020-11-05T22:04:49Z | |
dc.date.available | 2020-11-05T22:04:49Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | NEGRU, Ion. Some Properties of a Lattice Generated by Implicational Logics. In: CAIM 2018: The 26th Conference on Applied and Industrial Mathematics: Book of Abstracts, Technical University of Moldova, September 20-23, 2018. Chişinău: Bons Offices, 2018, p. 98. | en_US |
dc.identifier.uri | http://repository.utm.md/handle/5014/11173 | |
dc.description | Only Abstract | en_US |
dc.description.abstract | Consider the following implicational formulae: A1 = (p ⊃ p), A2 = (((p ⊃ p) ⊃ p) ⊃ p) = ((A1 ⊃ p) ⊃ p), …, Ai+1 = ((Ai ⊃ p) ⊃ p), …, (i = 1, 2, 3, …). Using these formulae (axioms), we may construct the following logics: L1 =< A2i >, L2 =< (A2i ⊃ A2i+1) >, L3 =< A2i−1 >, L4 =< (A2i−1 ⊃ A2i) >, i = 1, 2, 3, … viz. the logic L1 is generated by the axioms A2i, i = 1, 2, 3, ...; the process is analogous for logics L2, L3, L4. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Bons Offices | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | implicational logics | en_US |
dc.subject | lattices | en_US |
dc.subject | properties | en_US |
dc.title | Some Properties of a Lattice Generated by Implicational Logics | en_US |
dc.type | Article | en_US |
The following license files are associated with this item: