dc.contributor.author | CHIRIAC, L. | |
dc.contributor.author | DANILOV, A. | |
dc.contributor.author | LUPASCO, N. | |
dc.contributor.author | JO, N. | |
dc.date.accessioned | 2020-11-05T14:36:44Z | |
dc.date.available | 2020-11-05T14:36:44Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | CHIRIAC, L., DANILOV, A., LUPASCO, N., JO, N. On non-isomorphic quasigroups of small order. In: CAIM 2018: The 26th Conference on Applied and Industrial Mathematics: Book of Abstracts, Technical University of Moldova, September 20-23, 2018. Chişinău: Bons Offices, 2018, pp. 87-88. | en_US |
dc.identifier.uri | http://repository.utm.md/handle/5014/11143 | |
dc.description | Only Abstract | en_US |
dc.description.abstract | A non-empty set G is said to be a groupoid relatively to a binary operation denoted by {•}, if for every ordered pair (a, b) of elements of G there is a unique element ab ∈ G. A groupoid (G, •) is called a quasigroup if for every a, b ∈ G the equations a • x = b and y • a = b have unique solutions. A quasigroup (G, •) is called a Ward quasigroup if it satisfies the law (a • c) • (b • c) = a • b for all a, b, c ∈ G. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Bons Offices | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | non-isomorphic quasigroups | en_US |
dc.subject | groupoid | en_US |
dc.title | On non-isomorphic quasigroups of small order | en_US |
dc.type | Article | en_US |
The following license files are associated with this item: