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Abstract 
 

The collective elementary excitations of the two-dimensional magnetoexcitons in a state 
of Bose-Einstein condensation (BEC) with wave vector 0k =

G
 were investigated in terms of the 

Bogoliubov theory of quasiaverages. The starting Hamiltonian of the electrons and holes lying 
on the lowest Landau levels (LLLs) contains the supplementary interactions due to the virtual 
quantum transitions of the particles to the excited Landau levels (ELLs) and return back. As a 
result, the interaction between the magnetoexcitons with 0k =

G
 does not vanish and their BEC 

becomes stable as regards the collapse. The energy spectrum of the collective elementary exci-
tations consists of two exciton-type branches (energy and quasienergy branches) each of them 
with energy gap and roton-type section, the gapless optical plasmon branch, and the acoustical 
plasmon branch, which reveals the absolute instability in the range of small wave vectors. 

 
1. Introduction 

 
Properties of atoms and excitons are dramatically changed in strong magnetic fields, such 

that the distance between Landau levels cω= , exceeds the corresponding Rydberg energies 

yR and the magnetic length /l c eH= = is small compared to their Bohr radii [1, 2]. Even more 
interesting phenomena are exhibited in the case of two-dimensional (2D) electron systems due 
to the quenching of the kinetic energy at high magnetic fields, with the representative example 
being integer and fractional Quantum Hall effects [3-5]. The discovery of the FQHE [6-8] 
changed fundamentally the established concepts about charged elementary excitations in sol-
ids [5]. The notion of the incompressible quantum liquid (IQL) was introduced in [7] as a ho-
mogeneous phase with the quantized densities /v p q= , where p is an integer and 1q ≠  is odd 
having charged elementary excitations with a fractional charge * /e e q= ± . These quasiparticles 
were named anyons. A classification for free anyons and their hierarchy were studied in [9, 10]. 
An alternative concept to hierarchical scheme was proposed in [11], where the notion of com-
posite fermions (CF) was introduced. The CF consists of the electron bound to an even number 
of flux quanta. Within the frame of this concept, the FQHE of electrons can be physically un-
derstood as a manifestation of the IQHE of CFs [11]. The statistics of anyons was determined 
in [10, 12]. It was established that the wave function of the system changes by a complex phase 
factor exp[ ]iπα , when the quasiparticles are interchanged. For bosons 0α = , for fermions 

1α = , and for anyons with * / 3e e= − , their statistical charge is 1/ 3α = − . As was shown 
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in [13], there were no soft branches of neutral excitations in IQL. The energy gap Δ  for forma-
tion of a quasielectron-quasihole pair has the scale of Coulomb energy 2 /QE e lε= , where ε is 
the dielectric constant of the background. However, delta was found to be small 0.1 QEΔ � . The 
lowest branch was called magnetoroton [13]; it can be modelled as a quasiexciton [5]. As was 
mentioned in [5], the traditional methods and concepts based either on the neglecting of the 
electron-electron interaction or on self-consistent approximation are inapplicable to IQL. In a 
strong magnetic field, the binding energy of an exciton increases from yR to lI . 

There are two small parameters of the theory. One of them determines how strong the 
magnetic field strength H  is, and it verifies whether the starting supposition of a strong mag-
netic field is fulfilled. This parameter is expressed by the ratio / 1l cI ω <= . Here lI  is the magne-
toexciton ionization potential, cω  is the cyclotron frequency /eH cμ  calculated with the 
reduced mass μ  and the magnetic length l . Another small parameter has a completely different 
origin and is related with the concentration of the electron-holes(e-h) pairs. In our case, it can be 
expressed as a product of the filling factor 2vv =  and of another factor 2(1 v )−  which reflects 
the Pauli exclusion principle and the phase-space filing (PSF) effect. This compound parameter 

2 2v (1 v )−  in the case of Bose-Einstein condensed excitons can take the form 2 2vu , where u  
and v  are the Bogoliubov transformation coefficients and 2 2(1 v )u = − . The two small parame-
ters will be used below. However, in the case of FQHE, the filling factor 2vv =  basically deter-
mines the underlying physics and it can not be changed arbitrarily. Instead of the perturbation 
theory on the filling factor v , the exact numerical diagonalization for a few number of particles 

10N ≤  proved to be the most powerful tool in studies of such systems [5]. The spherical geome-
try for these calculations was proposed [10, 14], considering a few number of particles on the 
surface of a sphere with the radius R Sl= , so as the density of the particles on the sphere to be 
equal with the filling factor of 2DEG. The magnetic monopole in the center of the sphere creates 
a magnetic flux through the sphere 02Sφ , which is multiple to the flux quantum 0 2 /c eφ π= = . 
The angular momentum L  of a quantum state on the sphere and the quasimomentum k  of the 
FQHE state on the plane obey the relation L Rk= . Spherical model is characterized by continu-
ous rotational group, which is analogous to the continuous translational symmetry in the plane. 

The properties of the symmetric 2D electron-hole (e-h) system (i.e., 0h = ), with equal 
concentrations for both components, with coincident matrix elements of Coulomb electron-
electron, hole-hole, and electron-hole interactions in a strong perpendicular magnetic field also 
attracted much attention during last two decades [15-22]. A hidden symmetry and the multipli-
cative states were discussed in many papers [19, 23, 24]. The collective states such as the 
Bose-Einstein condensation (BEC) of two-dimensional magnetoexcitons and the formation of 
metallic-type electron-hole liquid (EHL) were investigated in [15-22]. The search for Bose-
Einstein condensates has become a milestone in the condensed matter physics [25]. The re-
markable properties of super fluids and superconductors are intimately related to the existence 
of a bosonic condensate of composite particles consisting of an even number of fermions. In 
highly excited semiconductors, the role of such composite bosons is taken on by excitons, 
which are bound states of electrons and holes. Furthermore, the excitonic system has been 
viewed as a keystone system for exploration of the BEC phenomena, since it allows to control 
particle densities and interactions in situ. Promising candidates for experimental realization of 
such system are semiconductor quantum wells (QWs) [26], which have a number of advan-
tages compared to the bulk systems. The coherent pairing of electrons and holes occupying 
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only the lowest Landau levels (LLLs) was studied using the Keldysh-Kozlov-Kopaev method 
and the generalized random-phase approximation [20, 27]. The BEC of magnetoexcitons takes 
place in a single exciton state with wave vector k, supposing that the high density of electrons 
in the conduction band and of holes in the valence band was created in a single QW structure 
with size quantization much greater than the Landau quantization. In the case 0k ≠ , a new 
metastable dielectric liquid phase formed by Bose-Einstein condensed magnetoexcitons was 
revealed [20, 21]. The importance of the excited Landau levels (ELLs) and their influence on 
the ground states of the systems was first noticed by the authors of papers [16-19]. The influ-
ence of the ELLs of electrons and holes was discussed in detail in papers [21, 22]. The indirect 
attraction between electrons (e-e), between holes (h-h), and between electrons and holes (e-h) 
due to the virtual simultaneous quantum transitions of the interacting charges from LLLs to the 
ELLs is a result of their Coulomb scattering. The first step of the scattering and the return back 
to the initial states were described in the second order of the perturbation theory. 

Das Sarma and Madhukar [28] have investigated theoretically the longitudinal collec-
tive modes of spatially separated two-component two-dimensional plasma in solids using the 
generalized random phase approximation. It can be implemented in semiconductors hetero-
junctions and superlattices. The two-layer structure with two-component plasma is discussed 
below. It has long been known that two-component plasma has two branches of its longitudi-
nal oscillations. The higher frequency branch is named optical plasmon (OP). Here the two 
carrier densities of the same signs oscillate in-phase and their density fluctuation operators 

,1ˆ ( )e Qρ
G

 and ,2ˆ ( )e Qρ
G

 form an in-phase superposition 

,1 ,2ˆ ˆ ˆ( ) ( ) ( )OP e eQ Q Qρ ρ ρ= +
G G G

. 
In the case of opposite signs of electron and hole charges, they oscillate out-of-phase and their 
charge density fluctuation operators ˆ ( )e Qρ

G
 and ˆ ( )h Qρ

G
 combine in out-of-phase manner 

ˆ ˆ ˆ( ) ( ) ( )OP e hQ Q Qρ ρ ρ= − −
G G G

. 
The lower frequency branch is named acoustical plasmon (AP). Now the carriers of different 
signs oscillate in-phase, whereas the carriers of the same signs oscillate out-of-phase. Their 
charge density fluctuation operators combine in the form 

,1 ,2ˆ ˆ ˆ( ) ( ) ( );AP e eQ Q Qρ ρ ρ= −
G G G

 ˆ ˆ ˆ( ) ( ) ( )AP e hQ Q Qρ ρ ρ= + −
G G G

. 
The optical and acoustical branches of two-component electron plasma have the dispersion 
relations in the long wavelength region as follows 

( ) ;OP q qω ∼  ( ) ;AP q qω ∼  0q → . 
The plasmon oscillations in one-component system on the monolayer in a strong perpendicular 
magnetic field were studied by Girvin, MacDonald, and Platzman [13], who proposed the 
magnetoroton theory of collective excitations in the conditions of the fractional quantum Hall 
effect (FQHE). The FQHE occurs in low-disorder, high-mobility samples with partially filled 
Landau levels with filling factor of the form 1 mν = , where m is an integer, for which there is 
no single-particle gap. In this case, the excitation is a collective effect arising from many-body 
correlations due to the Coulomb interaction. Considerable progress has recently been achieved 
toward understanding the nature of the many-body ground state well described by Laughlin 
variational wave function [7]. The theory of the collective excitation spectrum proposed 
by [13] is closely analogous to the Feynman’s theory of superfluid helium [29]. The main 
Feynman’s arguments lead to the conclusions that, on general grounds, the low lying excita-
tions of any system will include density waves. As regards the 2D system, the perpendicular 
magnetic field quenches the single particle continuum of kinetic energy leaving a series of dis-
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crete highly degenerate Landau levels spaced in energy at intervals cω= . In the case of filled 
Landau level 1ν =  because of Pauli exclusion principle, the lowest excitation is necessarily the 
cyclotron mode in which particles are excited into the next Landau level. In the case of FQHE, 
the LLL is fractionally filled. The Pauli principle no longer excludes low-energy intra-Landau-
level excitations. For the FQHE case, the low-lying excitations, rather than the high-energy 
inter-Landau-level cyclotron modes, are of the primary importance [13]. The spectrum has a 
relatively large excitation gap at zero wave vector 0kl = ; in addition, it exhibits a deep mag-
neto-roton minimum at 1kl ∼  quite analogous to the roton minimum in helium. The magneto-
roton minimum becomes deeper and deeper with decreasing filling factor ν  in the row 1/3, 
1/5, 1/7; it is the precursor to the gap collapse associated with the Wigner crystallization, 
which occurs at 1 7ν = . For largest wave vectors, the low lying mode crosses over from being 
a density wave to becoming a quasiparticle excitation [13]. The Wigner crystal transition oc-
curs slightly before the roton mode goes completely soft. The magnitude of the primitive recip-
rocal lattice vector for the crystal lies close to the position of the magneto-roton minimum. The 
authors of [13] suggested also the possibility of pairing of two rotons of opposite momenta 
leading to the bound two-roton state with small total momentum, as it is known to occur in 
helium. In difference from the case of fractional filling factor, the excitations from a filled 
Landau level in the 2DEG were studied by Kallin and Halperin [30]. 

Fertig [31] investigated the excitation spectrum of two-layer and three-layer electron 
systems. In a particular case, the two-layer system in a strong perpendicular magnetic field 
with filling factor 1 2ν =  of the LLL in the conduction band of each layer was considered. 
Inter-layer separation z was introduced. The spontaneous coherence of two-component two-
dimensional (2D) electron gas was introduced. 

Fertig has determined the energy spectrum of the elementary excitations within the 
frame of this ground state. In the case of z = 0, the lowest-lying excitations of the system are 
the higher energy excitons. 

Because of the neutral nature of the 0k =
G

 excitons, the dispersion relation of these ex-
citations is given in a good approximation by ( ) ( ) (0)ex exk E k Eω = −= , where ( )exE k  is the 

energy of exciton with wave vector k
G

. This result was first obtained by Paquet, Rice, and 
Ueda [19] using a random phase approximation (RPA). In the case z = 0, the dispersion rela-
tion ( )kω  vanishes as 2k  for 0k → , as one expects for Goldstone modes. As was shown by 
Fertig [31], for z > 0, ( )kω  behaves as an acoustical mode ( )k kω ∼  in the range of small k , 
whereas in the limit k →∞  ( )kω  tends to the ionization potential ( )zΔ . 

In the region of intermediate values of k , when 1kl ∼ , the dispersion relation develops 
the dips as z is increased. At certain critical value of erz=z , the modes in the vicinity of the 
minima become equal to zero and are named soft modes. Their appearance testifies that the 
two-layer system undergoes a phase transition to the Wigner crystal state. 

The similar results concerning the linear and quadratic dependences of the dispersion 
relations in the range of small wave vectors q  were obtained by Kuramoto and Horie [32], 
who studied the coherent pairing of electrons and holes spatially separated by the insulator 
barrier in the structure of the type coupled double quantum wells (CDQW). 

 
2. Hamiltonian of the supplementary interaction 

 
The Hamiltonian of the Coulomb interaction of the electrons and holes within the frame 

LLLs has the form 
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suppl
1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( )
2 e h e e h hQ

Q

H W Q Q N N N N Hρ ρ μ μ⎡ ⎤= − − − − − +⎣ ⎦∑ G
G

G G
,        (1) 

where QW G  is the Fourier transform of the Coulomb interaction within the frame of LLLs, ˆ
eN  

and ˆ
hN  are the operators of the numbers of electrons and holes on the LLLs. They are deter-

mined below. supplĤ  is the supplementary indirect attractive interaction between the particle 
lying on the LLLs in view of their virtual transitions on the ELLs and their return back [22] 

† †
suppl

, ,

† † † †

, , , ,

1 ( , ; )
2

1 ( , ; ) ( , ; ) .
2

e e p q q s p s
p q s

h h p q q s p s e h p q q s p s
p q s p q s

H p q s a a a a

p q s b b b b p q s a b b a

φ

φ φ

− + −

− + − − + −

= − −

− −

∑

∑ ∑
          (2) 

Here the creation and annihilation operators † ,p pa a  for electrons and † ,q qb b  for holes were 
introduced. The matrix elements of indirect interaction ( , , )i j p q zφ −  are described by the 
common expressions [22] 

,

( , , ; , )
( , , ) i j

i j
n m ci cj

p q z n m
p q s

n m
φ

φ
ω ω

−
− =

+∑ = =
.         (3) 

In the case of electron-electron and hole-hole interaction, expression (3) has the form [22] 
( )

( )

2
, ,

, ,

2

( , , ; , ) exp ( )

exp ( ) ( ) ( ) ,

i i t k z t
t

n m n m

p q z n m W W i p q t l

i p q t z l t i t z i

σ
κ σ

φ κ

σ κ σ

− −

+ +

≅ − − ×

× − − − + − +

∑
    (4) 

but in the case of electron-hole interaction, it is 
( )2

, ,
, ,

( , , ; , ) exp ( )( )

( ) ( ) ( ) ( ) ,

e h t k z t
t

n m n m

p q z n m W W i p q l

t i t i t z i t z i

σ
κ σ

φ κ σ

κ κ σ σ

− −≅ + + ×

× + − − + − −

∑
       (5) 

where 
( )2 2 22

, , , , ,2 2
0

2 exp ,
2s s k s k s k s k

s k leW W W W W
S s k

κ
π

ε
− − − −

⎡ ⎤+
⎢ ⎥= − = = =
⎢ ⎥+ ⎣ ⎦

.       (6) 

Hamiltonian (2) has a Hermitian conjugate form, if the requirements are fulfilled 
* ( , ; ) ( , ; ), , ,i j i jp s q s s p q s i j e hφ φ− −− + − = = .         (7) 

Hermiticity requirement (7) can be deduced, for example, in the case of electron-electron in-
teraction as follows 

* 2
, ,

, ,

2

( , ; ; , ) exp( ( 2 ) )

exp( ( ) )( ) ( ) .

i i t z t
t

n m n m

p z q z z n m W W i p q z t l

i p q t z l t i t z i

κ σ
κ σ

φ κ

σ κ σ

− − −

+ +

− + − ≅ − − − − ×

× − − − − − + −

∑
      (8) 

Introducing the new summation variables 
' , ', 't t z κ σ σ κ= − = − = −           (9) 

and taking into account the properties (5) we will obtain exactly expression (4), what proves 
the affirmation. In the same way, we can write 

* 2
, ,

, ,
( , ; ; , ) exp( ( )( ) )

( ) ( ) ( ) ( ) ,

e h t t z
t

n m n m

p z q z z n m W W i p q l

t i t i t z i t z i

κ σ
κ σ

φ σ κ

κ κ σ σ

− +− + − ≅ − + + ×

× − + + − + +

∑
  (10) 
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which after substitution (9) coincides with expression (5). There are two other properties of 
the coefficients ( , ; )i j p q sφ − , namely, their reality and parity, that is, 

* ( , ; ) ( , ; ); ( , ; ) ( , ; ).i j i j i j i jp q s p q s p q s p q sφ φ φ φ− − − −= − − − =     (11) 
They can be proved as was demonstrated above using the substitution 'σ σ= −  and 'κ κ= − , 
when the reality is considered and the substitution ',  ',  and 't t σ σ κ κ= − = − = −  when the 
parity is discussed. 

Side by side with the properties demonstrated above, there is another property related 
with the translational symmetry of the system in one in-plane direction, which does exist in 
the Landau gauge description. As a result, the coefficients ( , ; )i j p q sφ −  do not depend sepa-
rately on the variables p and q but in their linear combination as follows 

�

�
-- ( , ; ) ( , ); ;

( , ; ) ( , ); .
i ii i

e he h

p q s s p q s

p q s s p q

φ φ κ κ

φ φ σ σ−−

= = − −

= = +
           (12) 

They have the properties 
� � � � � �* *

( , ) ( , ); ( , ) ( , ); ( , ) ( , ).i j i j i j i j i j i js s s s s sφ σ φ σ φ σ φ σ φ σ φ σ− − − − − −− = = − − =      (13) 
Their Fourier transforms are 

� 2( , ) ( , ) exp( )i ji j s s i l
κ

ψ σ φ κ κσ−− =∑ .        (14) 

Their symmetry properties follow directly from the previous ones 
*

*

( , ) ( , ); hermiticity

( , ) ( , ); reality

( , ) ( , ). parity.

i j i j

i j i j

i j i j

s s

s s
s s

ψ σ ψ σ

ψ σ ψ σ

ψ σ ψ σ

− −

− −

− −

= − −

= −

− − =

            (15) 

They lead to the conclusion 
* ( , ) ( , )i j i js sψ σ ψ σ− −= .        (16) 

These properties will be used below during the transformation of Hamiltonian (2) written in 
terms of the single particle operators † †, , ,p p p pa a b b  to the form expressed through the two-

particle operators of the electron and hole densities l l( ) and ( )e hQ Qρ ρ
JG JG

 of the type 
l l2 2† †

2 2 2 2

( ) ; ( ) .y y

x x x x

iQ tl iQ tl
e hQ Q Q Qt t t tt t

Q e a a Q e b bρ ρ
− + + −

= =∑ ∑
JG JG

           (17) 

The relations between two sets of operators are 
l

l

l

† 2

2 2

† 2 2

† 2 2

1 ( , ) exp( );

1 ( , ) exp ;
2

1 ( , ) exp ,
2

es sp p

ep p s

eq q s

a a s i pl
N

isa a s i pl l
N

isa a s i ql l
N

κ

κ

κ

ρ κ κ

κρ κ κ

κρ κ κ

− +

−

+

= −

⎛ ⎞= − − +⎜ ⎟
⎝ ⎠

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

∑

∑

∑

         (18) 

where 22N S lπ= , S is the layer surface area and l  is the magnetic length. Here the 
δ −Kronecker symbol was used 

21 exp( ( ) ) ( , )kr
p

ip l
N

σ κ δ σ κ− =∑ .       (19) 

Taking into account that 
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l l

�

l l l l l

† †

, , ,

† †

1( , ; ) ( , ) ( , ) ( , ),

( , ; ) ( ,0) ,

;    ;      

e ee e p p s q q s e e
p q s s

e ee e i i
s s

e h e hp p p p
p p

p q s a a a a s s s
N

p p s s s B

a a N b b N N N N

σ

φ ψ σ ρ σ ρ σ

φ φ

− − + −

−− −

= − −

− = =

= = = +

∑ ∑

∑ ∑

∑ ∑

  (20) 

and the similar expressions for the hole-hole interaction, we can write 

l l l l l

† † † †

, , , ,

,

1 1( , ; ) ( , ; )
2 2

1 1 ( , ) ( , ) ( , ) ( , ) ( , ) .
2 2

e e p q q s p s h h p q q s p s
p q s p q s

e e h hi i i i
s

p q s a a a a p q s b b b b

B N s s s s s
N σ

φ φ

ψ σ ρ σ ρ σ ρ σ ρ σ

− + − − + −

− −

+ =

⎡ ⎤= − + − − + − −⎣ ⎦

∑ ∑

∑
       (21) 

The supplementary electron-hole interaction can be transformed as follows 
l l† †

, , ,

1( , ; ) ( , ) ( , ) ( , )e he h p q q s p s e h
p q s s

p q s a b b a s s s
N σ

φ ψ σ ρ σ ρ σ− + − −= − − − −∑ ∑ .   (22) 

The Hamiltonian of supplementary indirect attractive interaction (2) has the form 
l l l l l

l l

suppl
,

,

1 1 ( , ) ( , ) ( , ) ( , ) ( , )
2 2

1 ( , ) ( , ) ( , ).

e e h hi i i i
s

e he h
s

H B N s s s s s
N

s s s
N

σ

σ

ψ σ ρ σ ρ σ ρ σ ρ σ

ψ σ ρ σ ρ σ

− −

−

⎡ ⎤= − − − + − − −⎣ ⎦

− − − − −

∑

∑
  (23) 

Instead of density operators for electrons and holes, we can introduce their in-phase and in 
opposite-phase linear combinations 

ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( ); ( ) ( ) ( );
1 1ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ; ( ) ( ) ( ) .
2 2

e h e h

e h

Q Q Q D Q Q Q

Q Q D Q Q D Q Q

ρ ρ ρ ρ ρ

ρ ρ ρ ρ

= − − = + −

⎡ ⎤ ⎡ ⎤= + = − − −⎣ ⎦ ⎣ ⎦

G G G G G G

G G G G G G      (24) 

They lead to the following relations 
1 ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ;
2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

e e h h

e h e h
Q Q

Q Q Q Q Q Q D Q D Q

Q Q D Q D Q Q Q Q D Q D Q Q

ρ ρ ρ ρ ρ ρ

ψ ρ ρ ψ ρ ρ− −

⎡ ⎤− + − = − + −⎣ ⎦

⎡ ⎤ ⎡ ⎤− − − = − − − =⎣ ⎦ ⎣ ⎦∑ ∑

G G G G G G G G

G G G G G G G G  

and to the final expression 
l

suppl
1 1 1 ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
2 4 4i i

Q Q
H B N V Q Q Q U Q D Q D Q

N N
ρ ρ−= − − − −∑ ∑
G G G G

,     (25) 

where 
( ) ( ) ( );      
( ) ( ) ( ).

i i e h

i i e h

U Q Q Q
V Q Q Q

ψ ψ
ψ ψ

− −

− −

= +

= −
            (26) 

The estimations show that 
1(0) 2 ;   (0) 0;   ( ) (0)i i i i

Q

U A V U Q B
N− −= = = + Δ∑G

G
. 

It means that one can suppose the dependences 
2 2

2( ) (0) ;    ( ) (0) 0
Q l

U Q U e V Q V
−

≅ ≅ =
G G

.          (27) 
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3. Bose-Einstein Condensation of magnetoexcitons in two alternative descriptions 
  

BEC of 2D magnetoexcitons was considered in [20, 21] within the frame of Keldysh-
Kozlov-Kopaev method [27], when the influence of the ELLs was neglected. The main results 
of this description will be mentioned below. 

The creation † ( )d P
G

 and annihilation ( )d P
G

 operators of the 2D magnetoexciton have 
the form 

2

2

† † †

2 2

2 2

1( ) ;

1( ) .

y

x x

y

x x

iP tl
P Pt tt

iP tl
P Pt tt

d P e a b
N

d P e b a
N

−

+ − +

− + +

=

=

∑

∑

G

G       (28) 

The energy of the two-dimensional magnetoexciton ( )exE P  depends on the two-dimensional 
wave vector P

G
 and forms a band with the dependence 

  2 2 2 2
4

0

( ) ( ) ( );

( ) ;
4

ex ex l

P l

ex l

E P I P I E P

P lI P I e I
−

= − = − +

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

G G G

G  
2

0

;
2l

eI
l

π
ε

=  lQ
Q

W I=∑ G
G

.   (29) 

The ionization potential ( )exI P  is expressed through the modified Bessel function 0 ( )I z , 
which has the limiting expressions 

2

0
0

( ) 1 ...;
4z

zI z
→

= + +  0 ( )
2

z

z

eI z
zπ→∞

= .     (30) 

It means that the function ( )E P  can be approximated as follows 
2 2

0
( ) ;

2P

PE P
M→

=
G =  

2
0

2

2(0) 2 ;M M
e l
ε

π
= =

=  2 /( ) (1 );l
P

E P I
Pl
π

→∞
= −    2 .cl

eH
=
=    (31) 

To introduce the phenomenon of BEC of excitons, the gauge symmetry of the initial Hamilto-
nian was broken by means of the unitary transformation ˆ ( )exD N  following the Keldysh-
Kozlov-Kopaev method [27]. We can shortly remember the main outlines of the Keldysh-
Kozlov-Kopaev method [27], [33] as it was done in papers [20, 21]. The unitary transforma-
tion ˆ ( )exD N  was determined by formula (8) [20]. Here exN  is the number of condensed ex-
citons. It transforms the operators ,p pa b  to other ones ,p pα β , as is shown in formulas (13) 

and (14) [20], and gives rise to the BCS-type wave function ( )g kψ  of the new coherent 
macroscopic state represented by expression (10) [20]. These results are summarized below 

†

† † † †

† †

ˆ ˆ( ) exp[ ( ( ) ( ))]; ( ) ( ) 0 ;

ˆ ˆ ˆ ˆv( ) ; +v( ) ;
2 2

v( ) ; v( ) .
2 2

x x

x x

ex ex g ex

x x
p p p k p p p p k p

x x
p p k p p p k p

D N N d k d k k D N

k kDa D ua p b Db D ub p a

k ka u p b u p

ψ

α β

α β β α

− −

− −

= − =

= = − − = = −

= + − = − −

     (32) 

 

0 0 0;p pa b= =  ( ) ( ) 0p g p gk kα ψ β ψ= = ; 

cos ;u g=  v sin ;g=  
2

v( ) v ;yik tlt e−=  22 ;exg l nπ=  
2

2

v ;
2

ex
ex

Nn
S lπ

= =  v;g =  v=Sinv.   (33) 
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The developed theory [20, 21] holds true in the limit 2 2v vSin≈ , what means the restric-
tion 2v 1< . Within the frame of this approach, the collective elementary excitations can be 
studied constructing the Green’s functions on the base of operators ,p pα β  and dealing with 

the transformed cumbersome Hamiltonian †ˆ ˆ( ) ( )ex exD N HD N=�H . 
We propose another way, which is supplementary but completely equivalent to the pre-

vious one and is based on the idea suggested by Bogoliubov in his theory of quasiaver-
ages [34]. Considering the case of a 3D ideal Bose gas with the Hamiltonian 

2 2
†

2 p p
p

pH a a
m

μ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

∑ G G
G

= ,         (34) 

where ,p pa a+  are the Bose operators and μ  is the chemical potential, Bogoliubov added the 
term 

0 0( )i iV a e a eϕ ϕη −− +         (35) 
breaking the gauge symmetry and proposed to consider the BEC on the state with 0p =  
within the frame of the Hamiltonian 

2 2
† †

0 0
ˆ ( ),

2
i i

p p
p

p a a V a e a e
m

ϕ ϕμ η −⎛ ⎞
= − − +⎜ ⎟

⎝ ⎠
∑ =H       (36) 

where 

 0
0 ;N n

V
η μ μ= − = −  0 .nη

μ
− =            (37) 

We will name the Hamiltonian of type (36) the Hamiltonian of the theory of quasiaverages. It 
is written in terms of the operators ,p pa a+  of the initial Hamiltonian (34). 

Our intention is to apply this idea to the case of BEC of interacting 2D magnetoexcitons 
and to deduce explicitly the Hamiltonian of type (36) with the finite parameters μ  and η  but 
with the relation of type (37). We intend to formulate the new Hamiltonian with broken sym-
metry in terms of the operators ,p pa b  avoiding the obligatory crossing to the operators 

,p pα β  (32) at least at some stages of the investigation where the representation in the ,p pa b  
operators remains preferential. 

It is obvious that the two representations are completely equivalent and complement each 
other. We will follow quasiaverage variant (36) instead of u, v  variant (32, 33), because it opens 
some new possibilities, which have not been studied up till now, to the best of our knowledge. 
For example, the Hamiltonian of type (36) is simpler than the Hamiltonian 

ˆ =�H †ˆ( ) ( )ex exD N HD N  in the ,pα  pβ  representation, and the deduction of the equation of 
motion for operators (35) and for the many-particle Green’s functions constructed on their base 
is also much simpler. We will take this advantage at some stages of investigation. On the con-
trary, for the calculations of the average values of different operators on the base of the ground 
coherent macroscopic state (27) or using the coherent excited states, as we have done in pa-
pers [20, 21], the most convenient way is to use the ,p pα β  representation. We will use, in a 
wide manner, the two representations. The new variant in the style of the theory of quasiaverages 
can be implemented rewriting the transformed Hamiltonian †ˆ( ) ( )ex exD N HD N  in the ,p pa b  
representation as follows below. To demonstrate it, we will represent the unitary transformation 
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ˆ ˆ†

0

ˆˆ ( ) ; ( ) ,
!

n
X X

ex ex
n

XD N e D N e
n

∞
−

=

= = =∑     (38) 

where 
† †ˆ ˆ ˆ( ( ) ( )); .i i

exX N e d K e d K X Xϕ ϕ−= − = −      (39) 

The creation and annihilation operators ( ),  ( )d k d k+  are written in the Landau gauge when 
the electrons and holes forming the magnetoexcitons are situated on their LLLs. This variant 
was considered firstly without taking into account of the ELLs, as one can see in [20]. The 
BEC of 2D magnetoexcitons was considered on the single-exciton state characterized by two-
dimensional wave vector k

G
. Expanding in series the unitary operators †( ), ( )ex exD N D N , 

we find the transformed operator �̂H  in the form 
ˆ ˆ 1 1 1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , ...

1! 2! 3!
X Xe He H X H X X H X X X H− ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ′= = + + + + = +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

�H H H .  (40) 

Here the Hamiltonian Ĥ  contains the main contributions of the first two terms in the series 
expansion (40), whereas the operator ˆ ′H  gathers the all remaining terms. 

As one can see looking at formulas (39), the operator X̂  is proportional to the square 
root of the exciton concentration exN , which is proportional to the filling number v . One 

can see that the contributions arising from the first commutator ˆ ˆ,X H⎡ ⎤⎣ ⎦  are proportional to v , 

the contributions arising from the second commutator ˆ ˆ ˆ, ,X X H⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦  are proportional to 2v  

and so on. Following the Bogoliubov’s theory of quasiaverages, the linear terms of the type 
( )( ) ( )i id k e e d kϕ ϕ ν+ −+  arising from the first commutator ˆ ˆ,X H⎡ ⎤⎣ ⎦  were included into Ĥ .

 The Hamiltonian Ĥ  with the broken gauge symmetry describing the BEC of 2D mag-
netoexcitons on the state with wave vector 0k ≠  being written in the style of the Bo-
goliubov’s theory of quasiaverages has the form 

†ˆ ˆ ( ( ))( ( ) ( )).i i
exH N E K e d K e d Kϕ ϕμ −= + − +

G G G
H        (41) 

For the case of an ideal 2D Bose gas, we rewrite the coefficient Vη−  in Hamiltonian (36) in 
the form Nη−  and, comparing it with deduced expression (41), we find 

( )( ) vE kη μ= − .             (42) 
Relation (42) coincides exactly with relation (20) of the Bogoliubov’s theory of quasiaver-
ages. In the case of ideal Bose gas, η  and ( )( )E k μ−  both tend to zero, whereas the filling 
number is real and different from zero. In the case of interacting exciton gas, both the parame-
ter η  and ( )( )E k μ−  are different from zero. 

The chemical potential μ  was determined in the HFB approximation in [21, 22]. In the 
first of them, only the simplest case of first ELLs was discussed; in the second one, a more 
general case representing the influence of the all ELLs was described. We shall mention the 
last results. They were obtained making the ( )uv  transformation (32) from the initial opera-
tors ,p pa b  to new operators ,p pα β  in the starting Hamiltonian H  (1). After its normal order-

ing within the frame of the operators † †, , ,p p p pα α β β , the transformed Hamiltonian †DHD  will 
contain a constant part playing the role of ground state energy, a quadratic Hamiltonian 2H  
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containing the diagonal terms of the type † ,p pα α  and † ,p pβ β  as well as the nondiagonal terms 

of the type † †
xp k pα β −  and 

xk p pβ α− , and a quartic Hamiltonian H ′ , which is neglected in the 
HFB approximation. 

The quadratic Hamiltonian 2H  was represented by formula (32) in [22], which is re-
peated below 

{ }

2 2 2 2 2
2

2 2

[ ( ) ( 2 ) (1 2 ) 2 (1 ) ( )]( )

[ ( ) ( ) ] ( ) 2 ( 2 ( )) ( )
2 2x x

p p p p
p

x x
k p p p k p

p

H E v B A v v v v k

k kuv p uv p v v B A k k

μ α α β β

β α α β ψ μ

+ +

+ +
− −

= , , + − − + − Δ + +

+ − + − − , , + − + Δ −Δ .

∑

∑

k

k
 (43) 

Here the notations of [20] were used 
2 2 2 4 2 2 2 2

2 2 2

( ) 2 ( ) ( ) ( ),
2

( ) 2 ( )(1 2 ) .

ex l

exl

E v v u k I v v u u vI

v v I k vI

μμ

ψ μ μ

, , = + − − −

, , = − ++

k

k
          (44) 

The coefficients ( ),   and i i i ik A B− −Δ  were deduced in [22]. They are 
2

2

2

;     0.481;

2 ;     0.216;

2(0) 0.344.

l
i i

c

l
i i

c

l

c

IA S S

IB T T

I

π ω

π ω

π ω

−

−

= ≈

= ≈

Δ =

=

=

=

 

Putting to zero the last bracket in equation (43), i.e., compensating the dangerous diagrams 
describing the spontaneous creation and annihilation of quasielectron-quasihole pairs in the 
new vacuum state (32), we determine the chemical potential μ  of the system in the HFB ap-
proximation 

2 2( ) 2 ( 2 ( ) ) ( ) 2 ( 2 ( ) ( )).HFB
ex ex exlk v B A k I k v B A k E kI I Iμ = − + − + − = − + − + Δ −� � �   (45) 

Here the renormalized ionization potential of magnetoexcitons ( )exI k�  containing the correc-
tion due to influence of all ELLs was introduced 

( ) ( ) ( );ex exI k I k k= + Δ�     ( ) ( );ex lI k I E k= −  ( ) ( ).ex exE k I k= −          (46) 
Upon introduction of the value HFBμ  in the remainder part of the first line of (43), the Hamil-
tonian 2H  will take the form 

2
( ) ( ).
2

ex
p p p p

p

I kH α α β β+ += +∑
�

             (47) 

This Hamiltonian describes the single-particle elementary excitation extracting it from a sin-
gle-exciton state with wave vector k of the condensed magnetoexcitons. To extract from the 
condensate one pair of new quasiparticles, the energy cost ( )exI k�  is equivalent to unbinding 
energy. For this reason, the excitation energy for one quasiparticle is ( ) / 2exI k� . Notice that the 
chemical potential HFBμ  in the point 2 0v =  coincides with the position of the renormalized 
magnetoexciton energy band on the energy scale ( ) ( )ex exE k I k= −� � , while in the point 2 1v =  it 
amounts to the value 2lI B A− + −  and does not depend on k. The concentration corrections to 
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HFBμ  are determined by the term 22 ( 2 ( ) ( ))v B A k E k− + Δ − . The term ( )E k−  appears within 
the frame of the LLLs and was obtained in [20, 21]. It determines the instability of the ground 
state within the HFBA when the corrections due to ELL are neglected. The term 2B A−  ap-
pears in both phases, not only in the case of BEC of magnetoexciton but also in the case of 
EHL. The term 2A−  is related with the average Hartree terms of the supplementary e–e, h–h, 
and e–h interactions; the term B, with the average exchange terms of the supplementary e–e 
and h–h interactions. The term 22 ( )v kΔ  is related to e–h interaction and Bogoliubov u-v 
transformation and is named the Bogoliubov self-energy term. 

Below, we shall construct the equations of motion for the operators of creation † ( )d P  
and annihilation ( )d P  of magnetoexciton and density fluctuation operators for electrons 

( )Qρ  and holes ( )D Q  on the base of Hamiltonian (1) in the quasiaverages theory approxima-
tion (QATA). 
 

4. Equations of motion for the two-particle operators and for the corresponding 
Green’s functions 

 
The starting Hamiltonian in QATA has the form 

( ) l†

1ˆ ˆ ˆ ˆ ˆ( ) ( )
2

1( ) ( )
2

1 1 ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( ).
4 4

e h e e h hQ
Q

i i
i i

Q Q

W Q Q N N N N

N e d k e d k B N

V Q Q Q U Q D Q D Q
N N

ϕ ϕ

ρ ρ μ μ

η

ρ ρ

−
−

⎡ ⎤= − − − − − −⎣ ⎦

− + + −

− − − −

∑

∑ ∑

G
G

G G

�

G G G G

H

   (48) 

The density fluctuation operators (24) with different wave vectors P and Q do not commute, 
which is related with the helicity or spirality accompanying the presence of a strong magnetic 
field [18]. They are expressed by the phase factors in the structure of operators (6) and by the 
vector-product of two 2D wave vectors P and Q and its projection on the direction of the 
magnetic field. These properties considerably influence the structure of the equations of mo-
tion for the operators and determine new aspects of the 2D electron-hole (e-h) physics. 

The equation of motion for the creation and annihilation operators ( ),  ( )d k d k+  (28) and 
for the density fluctuation operators (24) are 

2

2

† †

[ ]ˆ ˆ( ) [ ( ), ] ( ( ) ( )) ( ) 2 ( ) ( ) ( )
2

[ ]1 ( )( ) ( ) ( ) ( ,0) ;
2
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i iz
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dt
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μ ρ

η δ η

μ

⎛ ⎞×
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⎝ ⎠
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∑
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G

G
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GG GG G GG G
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G G G
=

H

H †

2
†

2
†

( )) ( )

[ ] ˆ2 ( ) ( ) ( )
2

[ ]1 ( )( ) ( ) ( ) ( ,0) ;
2

z

Q

i iz
kr

Q

P d P

P Q li W Q Sin d P Q Q

P Q l D PU Q Cos d P Q D Q Ne P e
N N

ϕ ϕ

ρ

η δ η− −

− − +
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+ − − − +⎜ ⎟

⎝ ⎠
⎛ ⎞×
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⎝ ⎠

∑

∑

G

G

G G

GGG G GG�
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(49) 
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2

2

ˆˆ ˆ( ) [ ( ), ]

[ ] ˆ ˆ ˆ ˆ( ) [ ( ) ( ) ( ) ( )]
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[ ]( ) ( ) ( ) ( ) ( ) ;
2 2
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N
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dt
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ρ ρ ρ ρ

= =

⎛ ⎞×
= − − + − +⎜ ⎟

⎝ ⎠
⎛ ⎞× ⎡ ⎤+ − + −⎜ ⎟ ⎣ ⎦
⎝ ⎠
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×
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∑

∑
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G

G
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GGG�

H
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†

ˆ ˆˆ ˆ[ ( ) ( ) ( ) ( )]
2
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2 2
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z

Q

i i

l Q D P Q D P Q Q
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Here 
( ( ) )v ( ( ) ( ) )v;   ( ) ( ) ( ) ( ) ( );ex ex ex lE k E k k E k E k k I k E kη μ μ= − = −Δ − = −Δ = − −Δ +� ��  

2
2 [ ]( ) ( );   ( ) 2 ;

2
z

ex l Q
Q

K Q lE k I E k E K W Sin
⎛ ⎞×

= − + = ⎜ ⎟
⎝ ⎠

∑  

lIμ μ= + ;  2v ;v =   2v ;exN N=   i 1( ) ( )
2QW Q W V Q

N
= − ; 

2 21( ) ( , , ) ( ) exp( [ ] )yk sl
e h x e h z

s Q
k p p k s e Q i k Q l

N
φ ψ−

− −Δ = − − = ×∑ ∑ . 

Following equations of motion (49), we will introduce four interconnected retarded Green’s 
functions at 0T =  [35, 36] 

†
11

† †
12

†
13

†
14

ˆ( , ) ( , ); ( ,0) ;

ˆ( , ) ( , ); ( ,0) ;

ˆ ( , ) ˆ( , ) ; ( ,0) ;

ˆ ( , ) ˆ( , ) ; ( ,0) .

G P t d P t X P

G P t d P t X P

P tG P t X P
N

D P tG P t X P
N

ρ

=

= −

=

=

G G G

G G G

GG G

GG G

        (50) 

They are determined by the relations 

[ ]ˆ ˆ( ) ( ); (0) ( ) ( ), (0) ;

ˆ ˆ( ) ;
ˆ ˆ ˆˆ ˆ ˆ, ,

iHt iHt

G t A t B i t A t B

A t e Ae

A B AB BA

θ

−

= = −

=

⎡ ⎤ = −⎣ ⎦

= =      (51) 

where Ĥ  is Hamiltonian (48). 
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The average  will be calculated at 0T =  in the HFB approximation using the ground 

state wave function ( )g kψ  (32). The time derivative of the Green’s function is calculated as 
follows 

( ) ( ); (0)

ˆ ˆ( ) (0), (0) ( ); (0)

ˆ ˆ ˆ( ) ( ), ; (0) .

d di G t i A t B
dt dt

dt A B i A t B
dt

t C A t H B

δ

δ

= =

⎡ ⎤= + =⎣ ⎦

⎡ ⎤= + ⎣ ⎦

= =

= =

=

       (52) 

C will stand for the average values, which do not depend on t. They are not needed in an ex-
plicit form for the determination of the energy spectrum of the elementary excitations. 

The Fourier transforms of Green’s functions (50) will be denoted as 
†

11

† †
12

†
13

†
14

ˆ( , ) ( ) ( ) ;

ˆ( , ) ( ) ( ) ;

ˆ( ) ˆ( , ) ( ) ;

ˆ ( ) ˆ( , ) ( ) .

G P d P X P

G P d P X P

PG P X P
N

D PG P X P
N

ω

ω

ω

ω

ω

ω

ρω

ω

=

= −

=

=

G G G

G G G

GG G

GG G

       (53) 

The two representations are related as follows 

0

( , ) ( , ) ( , )i t i t tG P e G P t dt e G P t dtω ω δω
∞ ∞

−

−∞

= =∫ ∫
G G G

, 

where the infinitesimal value 0δ → +  guarantees the convergence of the integral in the inter-
val (0, )∞  for the retarded Green’s function ( , )G P t

G
. 

The equation of motion in the frequency representation can be deduced on the base of 
equation (52) 

0 0

( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( ), ; (0)

i t t
i t i t t

i t

dG t dG t dedte i i dte i dtG t
dt dt dt

i G C dt A t H B e

ω δ
ω ω δ

ωω δ ω

∞ ∞ ∞ −
−

−∞

∞

−∞

= = − =

⎡ ⎤= + = + ⎣ ⎦

∫ ∫ ∫

∫

= = =

=
      (54) 

Green’s functions (53) will be named one-operator Green’s functions because, in the left hand 
side of the vertical line, they contain only one summary operator of the types ( )d P , † ( )d P , 
ˆ ( )Pρ  and ˆ ( )D P . At the same time, these Green’s functions are two-particle Green’s func-

tions, because the summary operators are expressed through the products of two Fermi opera-
tors. In this respect, Green’s functions (53) are equivalent to the two-particle Green’s 
functions introduced by Keldysh and Kozlov in their fundamental paper [27], forming the 
base of the theory of high density excitons in the electron-hole description. However, in con-
trast to [27], we are using the summary operators which represent integrals on the wave vec-
tors of relative motions. 

The equations of motion for the Green’s functions are 
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5. Dyson equation and self-energy parts 

 
Using the Zubarev’s procedure [36] for the Green’s function, we obtain a closed system 

of Dyson equation for the Green’s functions in the form 
4

1 1
1

( , ) ( , ) ;j jk k
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G G
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There are 16 different components of the self energy part of the 4 4×  matrix ( , )jk P ωΣ
G

 as follows 
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The self-energy parts ( , )jk P ωΣ
G

 represented by formulas (57) contain the different average 
values of the two-operator products. They were calculated using the ground state wave func-
tion (0)gψ  (32) taken with 0k =  and have the expressions 

2 2

2

† 3

†

( ) ( ) 4 ;

(0) 2 ( 2 (0));
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D Q d Q N d Q D Q N uv N

d d uv N v
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η μ
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= −Δ + − + Δ

− = − = −

= = = − Δ +

G G

G G G G

�

         (58) 

All these averages are extensive values proportional to N  or N , they essentially depend on 
the small parameters of the types 2 2vu  or 3vu , or uv . 

The cumbersome dispersion equation is expressed in a general form by the determinant 
equation 

det ( , ) 0.ij P ωΣ =
G

            (59) 

We can substitute the self-energy parts ( , )jk P ωΣ
G

 (57) in formula (59), and the determinant 
equation (59) disintegrates into two independent equations. One of them concerns only optical 
plasmons and has the simple form 

33( ; ) 0,P ωΣ =
G

           (60) 
whereas the second equation contains the self-energy parts 11Σ , 22Σ , 44Σ , 14∑ , 41∑ , 24∑ , 42∑  
and the quasi-average constant η�  
 

11 22 44 41 22 14 42 11 24( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) 0P P P P P P P P Pω ω ω ω ω ω ω ω ωΣ Σ Σ −Σ Σ Σ −Σ Σ Σ =
G G G G G G G G G

.(61) 
 

The solutions of dispersion equation (61) will be discussed in two limiting cases. One of them 
is the point 2 0v = , where the system behaves as an ideal Bose gas and the other case is 2 0v ≠ . 

All contributions to the self-energy parts contain the averages 
( ) ( ) ,  ( ) ( ) ,  (0)D Q D Q D Q d Q N d− −
G G G G

, which do not vanish in the point 0k =
G

. The 2D 

magnetoexciton system now is not at all a pure ideal gas. It was an ideal gas when the influ-
ence of ELLs was neglected. This unusual result was revealed for the first time by Lerner and 
Lozovik [15-17] and was confirmed by Paquet, Rice and Ueda [19]. In the case 2 0v = , due to 
the vanishing of averages (58), the self-energy parts become 
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the excitonic part of the dispersion relation and the acoustic plasmon frequency look like 
 

( ) ( );
( ) ( ) 0.

ex

A O

P E P
P P

ω
ω ω

= ±

= =

=
= =

        (63) 
 

The acoustical and optical plasmon branches have the frequencies equal to zero. This case is 
presented in Fig. 1. 
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Fig. 1. The energy spectrum of elementary excitations of magnetoexcitons in the case when 
concentration corrections are not taken into account, the filling factor equals zero. 
 

If we keep terms proportional to uv  in formulas (58), then the self-energy parts in-
cluded in (56) can be rewritten in following form 
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Dispersion equation (61) in this case looks like 

( )2 ( ) (0)
( ) (0) 4 .

U P d
E P

N
ω μ η η

⎛ ⎞
= ± − + Δ + −⎜ ⎟⎜ ⎟

⎝ ⎠

G
G

� �=            (65) 

In the Ref. [22] the coefficient ( 2 (0))i i i i lB A I− −− + Δ  was determined to be 0.025 at the ratio 
1 2lr I ω= == . It was used in the present calculations leading to the main parameters μ  and 

η�  2 2( (0)) 2 0.025 0.05lI v vμ + Δ = =i , 3 3( (0)) 2 0.025 0.05lv I v vη μ= − + Δ = − = −� i , and 

(0) (0) 2 0.15l i i lU d I N A uv I uv−= = . Introducing the dimensionless energies 

/ lIω ω=�= =  and ( ) ( ) / lE P E P I=�  one can transcribe solution (65) as follows 
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( )
2 2

22 2 2 20.05 ( ) 0.2 0.05 0.15
P l

v E P v v uveω
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= ± − + +⎜ ⎟⎜ ⎟
⎝ ⎠

�= .     (66) 

Their solutions are presented in Fig. 2. The excitonic branch of elementary excitations is char-
acterized by a roton-type behavior at the small and intermediary values of the wavevectors and 
by a monotonic increasing at higher values of the wavevectors. The acoustical and optical 
plasmon branches have frequencies equal to zero because the sums in expressions (57) con-
taining the coefficients 2 ( )U Q

G
, as well as ( ) ( )W Q U Q

G G� , were not included in these calculations. 
The neglected terms in the expressions for 33( , )P ωΣ

G
 and 44 ( , )P ωΣ

G
 can be calculated 

using the approximation (27) 2 2( ) (0)exp[ 2]U Q U Q l≅ −
G

, whereas the terms proportional to 
2 ( )U Q
G

 in the expressions 11( , )P ωΣ
G

 and 22 ( , )P ωΣ
G

 must be summarized together with the 

denominators of the types ( ) ( )i E P Q P Qω δ μ+ ± ± − ± Δ ± −
G GG G

= ∓ . They were represented as 
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and the approach was proposed 
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± ± − ± Δ ± −

G G
= ∓G GG G
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. 

In this rude approximation for denominators, using the known expressions for QW G  and ( )U Q
G

, 

the sums on Q
G

 were calculated; the results are represented in Figs. 3-5. 
 

 
 

Fig. 2. Two exciton branches of the energy spectrum of collective elementary excitations of the 
Bose-Einstein condensed magnetoexcitons on the wave vector 0k =

G
 calculated in HFBA using self-

energy parts (64) and the filling factor 2 0.1v = . 
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Fig. 3. Two exciton branches of the energy spectrum of collective elementary excitations of the 
Bose-Einstein condensed magnetoexcitons on the wave vector 0k =

G
 calculated in HFBA using self-

energy parts (57) and the filling factor 2 0.1v = . 
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Fig. 4. The dispersion law of acoustical plasmon branch in the presence of the BEC of magnetoexci-
tons on the wave vector 0k =

G
 calculated in HFBA using self-energy parts (57) and filling factor 2 0.1v = . 
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Fig. 5. The dispersion law of optical plasmon branch in the presence of the BEC of magnetoexcitons 
on the wave vector 0k =

G
 calculated in HFBA using self-energy parts (57) and the filling factor 2 0.1v = . 
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Conclusions 
 

The energy spectrum of the collective elementary excitations of a 2D e-h system situ-
ated in a strong perpendicular magnetic field in a state of BEC with wave vector 0k =

G
 was 

investigated within the frame of Bogoliubov theory of quasiaverages. The starting Hamilto-
nian describing the e-h system contains not only the Coulomb interaction between the parti-
cles lying on the LLLs but also the supplementary interaction due to their virtual quantum 
transitions from the LLLs to the ELLs and return back. This supplementary interaction gener-
ates after the averaging on the ground state BCS-type wave function the direct Hartree-type 
terms with attractive character, the exchange Fock-type terms giving rise to repulsion as well 
as the similar terms arising after the Bogoliubov u v−  transformation. The interplay of these 
three parameters gives rise to the resulting nonzero interaction between the magnetoexcitons 
with wave vector 0k =

G
 and to stability of their BEC as regards the collapse. It influences also 

the energy spectrum as well as the collective elementary excitations. It consists of four 
branches. Two of them are excitonic-type branches, one of them being the usual energy 
branch whereas the other is the quasienergy branch representing the mirror reflection of the 
energy branch. The other two branches are the optical and acoustical plasmon branches. The 
exciton energy branch has an energy gap due to the attractive interaction terms, which is 
needed to be got over during the excitation as well as a roton-type section in the range of in-
termediary values of the wave vectors. At higher values of wave vector, its dispersion law 
tends to saturation. The optical plasmon dispersion law is gapless with quadratic dependence 
in the range of small wave vectors and with saturation-type dependence in the remaining part 
of the spectrum. The acoustical plasmon branch reveals the absolute instability of the spec-
trum in the range of small and intermediary values of the wave vectors. In the remaining 
range of the wave vectors, the acoustical plasmon branch exhibits a very small real value of 
the energy spectrum tending to zero in the limiting case of high wave vectors. 
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