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Abstract 

            Peierls transition in quasi-one-dimensional organic crystals of TTFTCNQ type is studied 

in a 2D physical model of the crystal. The two most important electronphonon interactions are 

simultaneously considered. The analytic expression for the phonon polarization operator is 

obtained in the random phase approximation. The polarization operator as a function of 

temperature is calculated for different values of parameter d, where d is the ratio of the transfer 

energy in the direction transversal to conductive chains to the transfer energy along the 

conductive chains. Peierls critical temperature Tp is determined for different values of d.  

 

1. Introduction 

 

 Investigation of highly conducting quasi-one-dimensional (Q1D) organic crystals 

represents an important direction of solid state physics. It has been theoretically demonstrated 

that these crystals can have much more improved thermoelectric properties than those known so 

far (see [1] and references therein). The application of these materials for thermoelectric devices, 

which are designed to convert the heat directly into electricity, or the electricity in cooling, is one 

of important purposes of investigations. A great advantage in the use of these materials for 

thermoelectric devices is their low cost, relatively inexpensive technological process, and the 

ecological security in the application of these technologies. Furthermore, the use of these 

materials for thermoelectric devices allows us to solve many important issues, such as resource 

depletion, climate change, etc. 

 The best theoretically and experimentally studied Q1D organic crystals are those of TTT2I3 

(tetrathiotetracene iodide) and TTFTCNQ (tetrathiofulvalinium tetracyanoquinodimethane). A 

more complete physical model for these crystals is an essential element in the preparation of 

materials with a high thermoelectric efficiency. In this paper, we propose to study some 

properties of Q1D crystals of TTFTCNQ type, namely, the Peierls structural transition. This 

phenomenon is connected with the Peierls statement that the one-dimensional crystalline lattice 

with one electron per ion is unstable. At a certain temperature, which is referred to as Peierls 

critical temperature Tp, it is energetically favorable that the lattice doubles the period: in this case, 

the diminution of the electron subsystem energy exceeds the increase in the lattice elastic energy. 

The Peierls transition was studied by many authors (see [2], [3] and references therein). 

In the previous papers [47], the Peierls structural transition in quasi-one-dimensional 

crystals of TTFTCNQ type was investigated in a 1D physical model of the crystal. Peierls 

transition was studied in the case where the conduction band is half filled and Fermi 

dimensionless quasi momentum kF = /2. The critical temperature of transition was determined 
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and it was found to correspond to the experimental value. The Peierls transition has been studied 

also in the case where the concentration of conduction electrons is reduced and the band is filled 

up to a quarter of the Brillouin zone, kF = /4 [4]. The renormalized phonon spectrum has been 

calculated for different temperatures.  

In [8], the effect of impurity scattering on Peierls structural transition in quasi-one-

dimensional organic crystals of TTT2I3 type is discussed. It is shown that a low rate of the 

impurity scattering of carriers has a negligible effect on the Peierls structural transition. However, 

a great value of impurity concentration considerably changes the Peierls critical temperature.  

In this paper, we apply a more complete 2D physical model of the crystal. The two most 

important electronphonon interactions are simultaneously considered. One of them is of 

deformation potential type and the other is similar to that of a polaron. The amplitude ratios 

between the second and first interactions along the chains and in transversal directions are 

characterized by parameters γ1 and γ2, respectively. The analytic expression for the phonon 

polarization operator is obtained in the random phase approximation. The polarization operator as 

a function of temperature is calculated for different values of d, where d is the ratio of the transfer 

energy in the direction transversal to the conductive chains to the transfer energy along the 

conductive chains. Peierls critical temperature Tp is determined for different values of parameter 

d in two cases: (1) if the conduction band is half filled and the dimensionless Fermi momentum 

kF = /2 and (2) if the conduction band is filled up to slightly more than a half of the Brillouin 

zone and kF = /2 + δ, where δ represents the increase of the Fermi momentum determined by an 

increase in the carrier concentration. The results obtained in the 2D physical model are compared 

with those of the 1D model. 

 

2.  Two-dimensional crystal model 

 

The structure of this crystal is described in [4]. A TTFTCNQ compound forms quasi-one-

dimensional organic crystals composed of TCNQ and TTF linear segregated chains. The TCNQ 

molecules are strong acceptors, and the TTF molecules are donors. However, the conductivity of 

TTF chains is much lower than that of TCNQ chains and can be neglected in the first 

approximation.  

As in 1D case, we will apply the quasi-one-dimensional organic crystal model described 

in [9]. The Hamiltonian of the 2D crystal in the tight binding and nearest neighborhoods 

approximations is as follows: 
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The first term in (1) is the energy operator of free electrons in the periodic field of the 

lattice, where k is two-dimensional wave vector with projections (kx, ky). The energy  

 

                          ),cos(2)cos(2 21 akww y bk xk                                         (2) 

 

where w1 and w2 are the transfer energies of a carrier from one molecule to another along the 

chain (with lattice constant b, x direction) and in a perpendicular direction (with lattice constant 

a, y direction). In Eq. (1), )( kk aa  are the creation and annihilation operators. The second term in 

relation (1) is the energy of longitudinal acoustic phonons with two-dimensional wave vector q 

and frequency ωq: 
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where ω1 and ω2 are limit frequencies for oscillations in x and y directions. In Eq. (1), )( qq bb  are 

the creation and annihilation operators of an acoustic phonon. The third term of equation (1) 

represents the electronphonon interactions. Two interaction mechanisms are considered. The 

first interaction is determined by the fluctuations of energy transfer w1 and w2 due to the 

intermolecular vibrations (acoustic phonons). This interaction is similar to that of deformation 

potential, and the coupling constants are proportional to derivatives '

1w  and '

2w  of w1 and w2 with 

respect to the intermolecular distances, '

1w  > 0, '

2w  > 0. The second interaction is of the polaron 

type. This interaction is conditioned by the fluctuations of the polarization energy of the 

molecules around the conduction electron. The coupling constant of interaction is proportional to 

the average polarizability of the molecule 0 . This interaction is important for crystals composed 

of large molecules, such as TCNQ, so as 0  is proportional to the volume of molecules. The 

Coulomb interaction between the carriers is not considered, because this interaction is 

significantly screened by polarization effects. 

The square module of matrix element is represented in the following form: 
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where N  is the number of molecules in the basic region of the crystal, M  is the mass of the 

molecule, and parameters γ1 and γ2 have the sense of the amplitude ratio between the second and 

first electronphonon interactions: 
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             From exact series of perturbation theory for the phonon Green function [10], we sum up 

the diagrams containing 0, 1, 2 ... ∞ closed loops of two electron Green functions that make the 

most important contribution. This is the random phase approximation. We denote the phonon 

Green function in this approximation by ),( ttD  'rr , and the free phonons one by 

),(0 ttD  'rr , where r  and 'r  are the spatial coordinates, t and t  are the time coordinates. 

For function ),( ttD  'rr , an integral equation is obtained. Performing Fourier transformation 

after spatial and time coordinates, we obtain the Fourier component of the Green function 

D(q,Ω): 

 

                          ,,,,,, 00  qqqqq DDDD                                 (6) 

 

where  (q,Ω)  is the phonon polarization operator, q is the wave vector of longitudinal 

acoustic phonons, and Ω  is the renormalized phonon frequency.  

The critical temperature of Peierls transition is determined from the condition  

                                      ,0),(Re1  q                                                         (7) 

 

where ),(  q is the dimensionless phonon polarization operator 
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Here, A( qk, ) is the matrix element of electron-phonon interaction presented in (4), )(kε  is the 

energy operator presented in (2),  kn  is the Fermi distribution function, and ħ is the Planck 

constant.     

 

3. Results 

 

For a half filled conduction 

band, the critical temperature of 

Peierls transition is determined 

from (7) at Ω = 0, qx =  , and qy 

=  . The polarization operator as 

a function of temperature is 

calculated for different values of 

d, where d = 
'

2w /
'

1w .  In Figs. 1, 3, 

4, 5 (the polarization operator is 

named Polar) the results of 

calculation are presented.  

In all figures the transition 

temperature does not depend on 

the values of γ1 and γ2, because for 

qx =  , qy =   the respective 

terms become equal to zero. The 

Peierls transition temperature 

depends only on the values of d 

and of kF. In Figs. 1 and 35, the 

continuous lines correspond to the 

1D physical model and d = 0. For 

2D physical model of the crystal, 

the dash, dotted, and dash-dotted 

lines correspond to d = 0.013, 0.2 

and 0.6, respectively. Note that 

the value d = 0.013 is estimated 

for real crystals of TTFTCNQ.  

Figure 1 shows the case 

where kF = /2. It is evident that, 

in the both physical models—1D 

and 2D—the Peierls transition 

takes place. For d = 0, Tp  60 K; 

for d = 0.013, Tp  59 K; for d = 0.2, Tp  32 K; for d = 0.6, Tp  12K. It is observed that Tp 

strongly decreases with increasing parameter d; that is, the larger the deviation from the one-

dimensionality, the lower the critical temperature Tp. 

Fig. 1. Polarization operator as a function of 

temperature for different values of d and kF = /2. 

Fig. 2. Function under the integral in (8) for  

d = 0.6 and kF = /2 versus kx and ky. 
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Figure 2 shows the function 

under integral in (8) for d = 0.6 and  

kF = /2. It is observed that the 

integral has singular points, which 

makes the numerical calculation more 

difficult to carry out in order to attain 

the required precision. 

Figure 3 shows the case of  

kF = /2 + δ, where δ = 0.008 or about 

0.5% of the Fermi momentum 

increase. It is evident that, with an 

increase in the carrier concentration, 

the Peierls critical temperature is 

diminished. For d = 0, Tp  58 K; for 

d = 0.013, Tp  55 K; for d = 0.2,  

Tp  25 K, and for d = 0.6 the Peierls 

transition disappears. 

Figure 4 shows the case of  

kF = /2+ δ, where δ = 0.016. Now the 

additional increase in the carrier 

concentration leads to an increase by 

about 1% of the Fermi momentum. It is 

evident that, with a further increase in 

the carrier  concentration, Peierls 

critical temperature Tp is more 

diminished; moreover, the transition  

disappears for d = 0.2 and d = 0.6.  The 

Peierls transition take place only for d 

= 0, which corresponds to a simplified 

1D physical model of the crystal and 

for d = 0.013, which corresponds to the 

real 2D physical model.  For d = 0,  

Tp  50 K and for d = 0.013, Tp  46 K. 

Figure 5 shows the case of  

kF = /2+ δ, where δ = 0.02, or about 

1.3 % of the Fermi momentum 

increase. It is observed that, with an 

increase in the carrier concentration, 

the polarization operator decreases. The 

Peierls critical temperature also 

decreases. For d = 0, Tp  45 K and for 

d = 0.013, Tp  35 K, but for d = 0.2 

and d = 0.6 there is no Peierls 

transition. It is also evident that, for  

d = 0 and d = 0.013, with a further 

decrease in temperature, the transition 

Fig. 4. The same as in Fig. 1 for kF = /2+0.016. 
 

Fig. 3. The same as in Fig. 1 for kF = /2+0.008. 

Fig. 5. The same as in Fig. 1 for kF = /2+0.02. 
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appears again. The physical nature of this additional transition has not yet been established. 

 

4. Conclusions 

 

We have studied the Peierls transition in quasi-one-dimensional organic crystals of 

TTFTCNQ type in a 2D approximation. A more complete 2D physical model of the crystal has 

been applied. Two electronphonon interactions have been considered. One of them is of the 

deformation potential type and the other is similar to that of a polaron. The amplitude ratios 

between the second and first interactions have been characterized by parameters γ1 and γ2, 

respectively. The polarization operator as a function of temperature has been calculated in the 

random phase approximation for different values of parameter d, where d is the ratio of the 

transfer energy in the direction transversal to the conductive chains to the transfer energy along 

the conductive chains. Peierls transition temperature Tp has been determined. In this paper, we 

have investigated the cases where the conduction band is half filled and the dimensionless Fermi 

momentum kF = /2 and where the conduction band is filled up to slightly more than a half of the 

Brillouin zone and kF = /2 + δ, where δ represents the increase in the Fermi momentum 

determined by an increase in carrier concentration n. In both cases, the Peierls transition 

temperature does not depend on the values of γ1 and γ2. It has been found that, in the case where 

kF = /2, Tp strongly decreases with an increase in parameter d and, for a certain value of this 

parameter, the Peierls transition does not take place. In the second case, where kF = /2 + δ,  Tp 

also decreases with an increase in carrier concentration n, and, for a certain value of n, the 

transition disappears too. The Peierls structural transition disappears for certain values of d, with 

an increase in the carrier concentration, only in the 2D physical model of the crystal. In 1D 

physical model, the transition does not disappear at these concentrations; however, Tp decreases 

with increasing carrier concentration. For kF = /2, Tp  60 K, for kF = /2+0.008, Tp  58 K, for 

kF = /2+0.016, Tp  50 K and for kF = /2+0.02, Tp  45 K.  
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