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Abstract 

 

The Bose-Einstein condensation (BEC) of the two-dimensional (2D) 

magnetoexcitonpolaritons in microcavity, where the Landau quantization of the electron and 

hole states accompanied by the Rashba spinorbit coupling plays the main role, was  

investigated. The Landau quantization levels of the 2D heavy holes with nonparabolic dispersion 

law and third-order chirality terms both induced by the external electric field perpendicular to the 

semiconductor quantum well and strong magnetic field B give rise to a nonmonotonous 

dependence of the magnetoexciton energy levels and the polariton energy branches on B. The 

Hamiltonian describing the Coulomb electron–electron and electron–radiation interactions was 

expressed in terms of the two-particle integral operators, such as density operators ˆ ( )Q


 and 

ˆ ( )D Q


 representing the optical and acoustical plasmons and magnetoexciton creation and 

annihilation operators 
†

|| ||( ), ( )ex exk k 
 

 with in-plane wave vectors ||k


 and Q


. Polariton creation 

and annihilation operators 
†

|| ||( ), ( )ex exL k L k
 

 were introduced using the Hopfield coefficients and 

neglecting the antiresonant terms because the photon energies exceed the energy of the cavity 

mode. The BEC of the magnetoexciton–polariton takes place on the lower polariton branch at 

point || 0k 


 with the quantized value of the longitudinal component of the light wave vector, as 

in the point of the cavity mode. 

 The unitary coherent transformation of the obtained Hamiltonian leading to the breaking 

of its gauge symmetry was written as a Glauber-type coherent transformation using polariton 

operators †

0 0,L L  instead of the true Bose operators. It can be represented in a factorized form as a 

product of two unitary transformations acting separately on the magnetoexciton and photon 

subsystems. The first of them is similar to the KeldyshKozlovKapaev unitary transformation, 

whereas the second one is equivalent to the Bogoliubov canonical displacement transformation. It 
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was shown that the first transformation leads not only to the Bogoliubov u-v transformations of 

the electron and hole single-particle Fermi operators but also to the similar transformation of the 

two-particle integral operators. It becomes possible due to the extensive N-fold degeneracy of the 

lowest Landau levels (LLLs) in Landau gauge description, where N is proportional to the layer 

surface area S. In both cases, the u-v coefficients depend on the LLL filling factor, but in the last 

case, this dependence is doubled. The breaking of the gauge symmetry gives rise to the new 

mixed states expressed through the coherent superposition of the algebraic sum of the 

magnetoexciton creation and annihilation operators †

|| ||( ( ) ( ) )i i

ex exe k k e   
 

 and density 

operator ||
ˆ ( )D k


 representing the acoustical plasmon. In contrast, density operator ˆ ( )Q


 

representing the optical plasmon does not take part in these superpositions. 

 

1. Introduction 

 

The present article is based on the background previous papers and monographs [116] as 

well on the recent contribution [1726]. 

 In [17], the Hamiltonian of the electron-radiation interaction in the second quantization 

representation for the case of 2D coplanar electronhole (eh) systems in a strong perpendicular 

magnetic field was derived. The s-type conduction band electrons with spin projections 

1/ 2zs    along the magnetic field direction and the heavy holes with total momentum 

projections 3/ 2zj    in the p-type valence band were taken into account. The periodic parts of 

their Bloch wave functions are similar to ( )x iy  expressions with the orbital momentum 

projection 1vM    on the same selected direction. The envelope parts of the Bloch wave 

functions have the forms of plane waves in the absence of a magnetic field. In its presence, they 

completely changed due to the Landau quantization event. In [1726], the Landau quantization of 

the 2D electrons and holes is described in the Landau gauge and is characterized by the 

oscillator-type motion in one in-plane direction giving rise to discrete Landau levels enumerated 

by the quantum numbers 
en  and 

hn  and by the free translation motion in another in-plane 

direction perpendicular to previous one. The one-dimensional (1D) plane waves describing this 

motion are marked by the 1D wave numbers p and q. In [18], the Landau quantization of the 2D 

electrons with non-parabolic dispersion law, pseudospin components and chirality terms were 

investigated. On this base, in [19], the influence of the Rashba spinorbit coupling (RSOC) on 

the 2D magnetoexcitons was discussed. The spinor-type wave functions of the conduction and 

valence electrons in the presence of the RSOC have different numbers of Landau quantization 

levels for different spin projections. As was demonstrated in [18, 19, 22], the difference between 

these numbers is determined by the order of the chirality terms. Their origin is due to the 

influence of the external electric field applied to the layer parallel to the direction of the magnetic 

field. In [19], two lowest Landau levels (LLLs) of the conduction electron and four LLLs for the 

holes were used to calculate the matrix elements of the Coulomb interaction between the charged 

carriers as well as the matrix elements of the electron-radiation interaction. On these bases, the 

ionization potentials of the new magnetoexcitons and the probabilities of the quantum transitions 

from the ground state of the crystal to the magnetoexciton states were calculated. In the present 

description the number of the hole and magnetoexciton states will be enlarged and the formation 

of magnetopolaritons taking into account the RSOC will be described. A simpler version of 

magnetopolariton without taking into account the RSOC was described in [21] for the case of 
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interband quantum transitions and in [23] for the case of intraband quantum transitions.  

 The paper is organized as follows. In section 2, the results concerning the Landau 

quantization of the 2D heavy holes, as well as of the electrons, in the conduction band taking into 

account the Rashba spinorbit interaction were described. On this base, the Hamiltonians 

describing the electron-radiation interaction and of the Coulomb electronelectron interaction in 

the presence of the Rashba spinorbit coupling were deduced in sections 3 and 4, respectively. 

Section 5 is focused on the description of the magnetoexcitons in the model of a Bose gas. In 

section 6, the breaking of the gauge symmetry of the obtained Hamiltonians is introduced and the 

mixed photonmagnetoexcitonacoustical plasmon states are discussed. Section 7 offers 

conclusions. 

 First of all, we will describe the Landau quantization of the 2D heavy holes following  

[19, 22]. 
  

 

2. Landau quantization of the 2D heavy holes 

 

The full Landau-Rashba Hamiltonian for 2D heavy holes was discussed in [19] following 

formulas (13)(20). It can be expressed through the Bose-type creation and annihilation operators 

†a , a  acting on the Fock quantum states 
†( )

0
!

na
n

n
 , where 0  is the vacuum state of the 

harmonic oscillator. The Hamiltonian has the form [22] 
2 3

3

†

† † 0 ( )1 1ˆ ˆ 2 2 ,
2 2 0

1 0
ˆ

0 1

h ch

a
H a a a a I i

a

I

  
      

         
       





    (1) 

with the denotations 

  

4

4 3

| |
, , , .

| |

h z h z
ch

h ch ch

E Ee H c
l

m c l l e H

 
  

 
   

 

 
    (2) 

Parameter 
h  is not well known; therefore, different versions mentioned below were considered. 

The exact solutions of the Pauli-type Hamiltonian are described by formulas (21)(31) of [19]. In 

more detail, they were described in [22] and have the spinor form  

 
1 1 2 2

1 2

0 0 0 02 2

ˆ , , , | | | | 1.h h n n n n

n n n n

f f
H E f c n f d n c d

f f

   

   

          (3) 

The first three solutions depend only on one quantum number m with values 0, 1, 2 as follows 

[6]: 

 
0

( 0) ; ( 0) ,
0

1

2 4
h chE m m




 
     

 
   

 
13 9

( 1) ; ( 1) ,
2 4 0

h chE m m



 

      
 

      (4) 
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25

4

25
( 2) ; ( 2) .

2 0
h chE m m

 
      

 
  

All other solutions with 3m  depend on two quantum numbers ( 5 / 2)m   and ( 1 / 2)m   and 

have the general expression 

2 2

2

2 2 2 1/2

( 5 / 2; 1/ 2)5 1
( ; ) ( 1) (2 1) (2 5)

2 2 8

3
( (2 1) (2 5) 8 ( 1)( 2)) , 3.

2 8

h
h

ch

E m m
m m m m m

m m m m m m










  

           

 
           

 


 (5) 

The respective wave functions for 3m   and 4m   are 

  
3 4

0 1

3 4
( 3) and ( 4) .

0 1
h h

c c
m m

d d

           (6)  

They depend on coefficients 
mc  and 

3md 
, which obey to the equations 

  

2

3

2

3

2 2

3

1
(2 1) 2 2 ( 1)( 2) ,

2 4

5
(2 5) 2 2 ( 1)( 2) ,

2 4

| | | | 1.

m h m

m h m

m m

c m m i m m m d

d m m i m m m c

c d


 


 







 
        

 

 
       

 

 

  (7)  

There are two different solutions ( )h m   at a given value of 3m  and two different pairs of the 

coefficients 3( , )m mc d 

 . 

 The dependences of parameters 
ch ,  , and   on the electric and magnetic fields 

strengths may be represented for the GaAs-type quantum wells as follows TH y ; 

kV/cmzE x ; 00.25hm m ; 0.4 meVch y  ; 21.062·10 x y  ; 410 Cxy   with unknown 

parameter C , which will be varied in a larger interval of values. We cannot neglect the parameter 

C  putting it equal to zero because, in this case, as was argued in [19] formula (10), the lower 

spinor branch of the heavy hole dispersion law 
2 2

3
||

|| ||( )
2 2

h z
h

h

k E
E k k

m

  




  

has an unlimited decreasing, deeply penetrating inside the semiconductor energy gap at great 

values of ||k


. To avoid this unphysical situation, a positive quartic term 
4

||h zE k


 was added in 

the starting Hamiltonian. The new dependences were compared with the drawings calculated in 

Fig. 2 of [19] in the case 10 kV/cmzE   and 10C  . Four LLLs for heavy holes were selected in 

[19]. In addition to them, in [22], three other levels were studied as follows: 
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1

2

3

4

5

6

7

1 7
( ) ( , );

2 2

( ) ( 0);

3 9
( ) ( , );

2 2

( ) ( 1);

5 11
( ) ( , );

2 2

( ) ( 2);

7 13
( ) ( , ).

2 2

h h

h h

h h

h h

h h

h h

h h

E R E

E R E m

E R E

E R E m

E R E

E R E m

E R E











 



 



 



      (8) 

Their dependences on the magnetic field strength were represented in Figs. 1 and 2 of [22] at 

different parameters x  and C ; they are reproduced below. 

 
Fig. 1. (a) The lower branches of the heavy hole Landau quantization levels 

( 5 / 2; 1/ 2)hE m m    for 3m  at parameters 10 kV/cmzE   and 5.5C  ; (b) a 

general view of all the heavy hole Landau quantization levels with m=0,1,...,10 at the same 

parameters zE  and C . They are reproduced from Fig. 1 of [22]. 

 

 The general view of the lower branches 
5 1

( , )
2 2

hE m m    of the heavy hole Landau 

quantization levels with 3m  as a function of magnetic field strength is represented in Fig. 1a 

following formula (5). The upper branches exhibit a simpler monotonous behavior and are drawn 

together with some curves of the lower branches in Fig. 1b. All the lower branches in their initial 

parts have a linear increasing behavior up till they achieve the maximal values succeeded by the 

minimal values in the middle parts of their evolutions being transformed in the final quadratic 

increasing dependences. The values of the magnetic field strength corresponding to the minima 

and to the maxima decrease with increasing number m . These peculiarities can be compared 

with the case of Landau quantization of the 2D electron in the biased bilayer graphene described 

in [18]. The last-mentioned case is characterized by the initial dispersion law without parabolic 

part and by second order chirality terms. They both lead to dependences on magnetic field 

strength for the lower dispersion branches with sharp initial decreasing parts and minimal values 

succeeded by the quadratic increasing behavior. The differences between the initial dispersion 
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laws and chirality terms in two cases of bilayer graphene and of heavy holes lead to different 

intersections and degeneracies of the Landau levels. 

 The spinor-type envelope wave functions of the heavy holes in the coordinate 

representation look as follows [22]: 

   

2

2

2

3 3

( )
( , ; , ) ,

0

0,1,2.

( )
( , ; , ) ,

( )

3

iqx

m

h m

x

iqx
m m

h m

m mx

y qle
q x y

L

m

c y qle
q x y

d y qlL

m


 


 









 













    (9) 

The valence electrons in comparison with the holes are characterized by the opposite signs of the 

spin projections, wave vector, and charge. The respective envelope wave functions can be 

obtained from the previous ones by the procedure 

   
*

ˆ( , ; , ) ( , ; , )v y hq x y i q x y          (10) 

where ˆ
y  is the Pauli matrix. In coordinate representation, they are as follows: 

   

* 2

* * 2

3 3

* * 2

0
( , ; , ) ,

( )

0,1,2.

( )
( , ; , ) ,

( )

3

iqx

v m

mx

iqx
m m

v m

m mx

e
q x y

y qlL

m

d y qle
q x y

c y qlL

m

 



 





  




 






 



    (11) 

To obtain the full valence electron Bloch wave functions, expressions (11) must be multiplied by 

the periodic parts. In the p-type valence band, they have the form 

, , , , , ,

1
( ( , ) ( , ))

2
v p x q v p y qU x y iU x y  and are characterized by the orbital momentum projections 

1vM   , respectively. The hole orbital projections h vM M   have opposite signs in 

comparison with the valence electron. The full Bloch wave functions of the valence electrons are 

now characterized by a supplementary quantum number vM  side by side with the previous ones 

m , m   and q as follows: 

 

, , , , , , * 2

* * 2

3 3

, , , , , , * * 2

01
( , , ; , ) ( ( ) ( )) ,

( )2

0,1,2; 1,

( )1
( , , ; , ) ( ( ) ( )) ,

( )2

3, 1.

iqx

v v m v p x q v p y q

mx

v

iqx
m m

v v m v p x q v p y q

m mx

v

e
M q x y u r iU r

y qlL

m M

d y qle
M q x y u r iU r

c y qlL

m M

 



 





  



 
 

  


 

 

  

 

 
 (12) 

From this multitude of valence electron wave functions, the more important of them are 

characterized by the values of m
  with 3m   and 4 as well as by m  with 0,1m  . These four 
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lowest hole energy levels being combined with two projections 1hM   form a set of eight lowest 

hole states, which will be taken into account below.  

 Now, for completeness, we will remember the main results obtained by Rashba [1] in the 

case of the electron conduction band. They are required to obtain a full description of the 2D eh 

pair and of a 2D magnetoexciton under the condition of the Landau quantization under the 

influence of the RSOC. 

 The LLL of the conduction electron in the presence of the RSOC was obtained in [1]:  

   
e

0 0 e

e 1

1 1 e

e ( ).
, ; , ;

( )

ipx

e e

x

a y
R p x y

b yL




   

  
1

2 2 2

e 0 1

1
1 2 ;| | | | 1

4
R a b            (13)  

 
2 2

2 2 0
0 12 2

2
2

2

2 | |1
| | ; | | .

2 1 11 2
1 1 2 4

2
2 4

a
a b








 
     
   

 

  

The next electron level higher situated on the energy scale is characterized by the pure spin 

oriented state 

   
e

2e 2 e e e

0 e

0 1
, ; , ; .

( ) 2

e
ipx

R

x

R p x y
yL




        (14) 

Two LLLs for conduction electron are characterized by the values of 
e 00.067m m , 

ce 1.49 meV·y   and parameter 38·10 /x y  . They are denoted as 

    

2

e 1 ce

e 2 ce

1
( ) 1 2 ,

4

1
( ) .

2

E R

E R

 



 
    

 







    (15) 

 The lowest Landau energy level for electron e 1( )E R  has a nonmonotonous anomalous 

dependence on magnetic field strength near the point 0 TH  . It is due to the singular 

dependence of the RSOC parameter 
2 5 26.4·10 /x y  , which, in the total energy level 

expression, is compensated for by factor ce  of the cyclotron energy, where ce 1.49 y  meV. 

As earlier, parameters x and y are related with electric field  kV/cmzE x  and magnetic field 

 TH y . The second electron Landau energy level has a simple linear dependence on H . 

 The full Bloch wave functions for conduction electrons including their s-type periodic 

parts look as follows: 

   

2

0 0

1 , , 2

1 1

2 , , 2

0

( )
( , , ; , ) ( ) ,

( )

0
( , , ; , ) ( ) .

( )

ipx

c c s p

x

ipx

c c s p

x

a y ple
s R p x y U r

b y plL

e
s R p x y U r

y plL




















   (16) 
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Two lowest Rashba-type states for conduction electron will be combined with eight LLLs for 

heavy holes and with the corresponding states of the valence electrons. The eh pair will be 

characterized by 16 states. Heaving the full set of the electron Bloch wave functions in 

conduction and in the valence bands one can construct the Hamiltonian describing in second 

quantization representation the Coulomb electron-electron interaction as well as the electron-

radiation interaction. These tow tasks will be described in the next sections of our review paper. 

The results obtained earlier in [19, 22] taking into account only 8 eh states will be supplemented 

below.  

 

3. Electron-radiation interaction in the presence of the Rashba spin-orbit coupling 

 

In [17, 21] the Hamiltonian of the electron-radiation interaction in the second quantization 

representation for the case of two-dimensional (2D) coplanar eh system in a strong 

perpendicular magnetic field was discussed. The s -type conduction-band electrons with spin 

projections 1/ 2zs    along the magnetic field direction and the heavy holes with the total 

momentum projections 3/ 2zj    in the p -type valence band were taken into account. Their 

orbital Bloch wave functions are similar to ( )x iy  expressions with the orbital momentum 

projections 1M    on the same selected direction. The Landau quantization of the 2D electrons 

and holes was described in the Landau gauge with oscillator type motion in one in-plane 

direction characterized by the quantum numbers 
en  and 

hn  and with the free translational motion 

described by the uni-dimensional(1D) wave numbers p  and q  in another in-plane direction 

perpendicular to the previous one. The electron and hole creation and annihilation operators 

, ,z es n pa
, , ,z es n pa , and , ,z hj n qb

, , ,z hj n qb  were introduced correspondingly. The Zeeman effect and the 

Rashba spinorbit coupling in [17, 21] were not taken into account. 

 The electrons and holes have a free orbital motion on the surface of the layer with the area 

S  and are completely confined in 
3a


 direction. The degeneracy of their Landau levels equals 

2

0/ (2 )N S l , where 0l  is the magnetic length. In contrast, the photons were supposed to move 

in any direction in the three-dimensional (3D) space with the wave vector k


 arbitrary oriented as 

regards the 2D layer as it is represented in the Fig.2 reproduced from [17]. There are three unit 

vectors 1a


, 2a


, 3a


, the first two being in-plane oriented, whereas the third 3a


 is perpendicular to 

the layer. We will use the 3D and 2D wave vectors k


 and ||k


 and will introduce circular 

polarization vectors M


 for the valence electrons, heavy holes, and magnetoexcitons as follows: 

 
Fig. 2. Reciprocal orientations of circularly polarized vectors 

k
 


 and M


 reproduced from [17]. 
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  || 3 || 1 2 1 2

1
; ; ( ); 1.

2
z x y Mk k a k k a k a k a ia M       

       
   (17) 

The photons are characterized by two linear vectors ,k je


 or by two circular polarization vectors 

k
 


 obeying the transversality conditions: 

   ,,1 ,2

1
( ); ( · ) 0; 1,2.

2
k jk k k

e ie e k j       
   

    (18) 

The photon creation and annihilation operators can be introduced in two different polarizations as 

follows: 

      , ,1 ,2 , , ,2

†

1

† †1 1
; ;

2 2
k k k k k k

C C iC C C iC
 
          

 
2

, , , ,
1

;
k j k j k k k k

j

e C C C  

 


       
  

        (19)  

    
2

, , ,

†

,

†

1

† .
k j k j k k k k

j

e C C C  

 


       
  

 

 The reciprocal orientations of circular polarizations 
k

 


 and 
M


 will determine the values 

of scalar products ( · )Mk
  
 

. The electron-radiation interaction describing only the band-to-band 

quantum transitions with the participation of the eh pairs in the presence of a strong 

perpendicular magnetic field was obtained in [17] and can be used as initial expression for 

obtaining the interaction of 2D magnetoexcitons with the electromagnetic field.  

 These results will be generalized below taking into account the Rashba spinorbit 

coupling, which means the use of the spinor-type wave functions (12) and (16) instead of the 

scalar ones [17, 21]. The Hamiltonian looks as 

 

||

, ,
1,2 1 ,( , ) ,0

† †

, , , , , , , , , ,

† †

, ,

2
{[ ]

[ ( , , ; , , , ; ) ( , , , ; , , ; ) ]

[( ) ( ) ]

vz m m

i v v i

e rad k k k k
i M g qk k k k

i v c R g v M q v i v M q c R g

k k k k

e
H C C

m V

P c R g v M q k a a P v M q c R g k a a

C C

  

 


 



 

 



 

  
  

 

 

 
    
 

  

 

        
   

   

 

  

 

† †

, , , , , , , , , ,

[ ( , , ; , , , ; )

( , , , ; , , ; ) ]}
i v v i

i v

c R g v M q v i v M q c R g

P c R g v M q k

a a P v M q c R g k a a 





  

  





 (20) 

The matrix elements will be discussed below. One of them has the form 

 
2

1 , , , , ,

* *
2 * * 2 * 20 3

, , 0 1 2 , , , , , , 3

* *
2 *1

, ,

ˆˆ ˆ( , , ; , , , ; ) ( ) ( )

ˆ ˆ( ) ( ) ( )( ( ) ( )) ( )
2

2

i v m

ikr

v m c R g v M q

igx ikr iqxm
c s g x y v p x q v p y q m

x

m
c s g

x

P c R g v M q k d r r e p r

a d
d rU r e y gl e a p a p U r iU r e y pl

L

b c
d rU

L


  

 












 

    













    

     

 * 2 * 2

1 1 2 , , , , , ,
ˆ ˆ( ) ( ) ( )( ( ) ( )) ( )igx ikr iqx

x y v p x q v p y q mr e y gl e a p a p U r iU r e y pl     
    

    (21) 

One can represent the 2D coordinate vector r


 as a sum r R  
 

 of lattice point vector R


 and 

small vector 


 changing inside the unit lattice cell with lattice constant 0a  and volume 3

0 0v a . 
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Any 2D semiconductor layer has at least minimal width 
0a  and periodic parts ( )nkU r


 are 

determined inside the elementary lattice cell. Periodic parts ( )nkU r


 do not depend on R


 because 

( ) ( )nk nkU R U  
  

. On the other hand, envelope functions ( )n r


 describing the Landau 

quantization have a spread of the order of magnetic length 
0l  which is much greater than 

0a  

(
0 0l a ). It means that they hardly depend on 


, i.e., ( ) ( )n nR R   

 
. The matrix elements 

(21) contains some functions that do not depend on R


 and other ones that do not depend on 


. 

Only the plane wave 
ikr ikR ike e 
   

 contains both of them. Derivative 
r




  acts in the same manner 

on functions ( )nkU 


 and ( )n R


 because R


 and 


 are the components of r


. These properties 

suggested transforming the 2D integral on variable r


 in two separate integrals on variables R


 

and 


 as follows: 

0

2 2 2 3 2

0

0 0

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

R R v

d rA R B A R d B A R a d B d RA R d B
v v

              

          
      (22) 

Here the small value of 2

0a  is substituted by the infinitesimal differential value 
2d R


 because 

( )A R


 is a smooth function on R


. The integrals on te volume 
0v  of the elementary lattice cell 

contain the quickly oscillating periodic parts , , ( )c s gU 


 and , , , ( )v p i qU 


 belonging to s-type 

conduction band and to p-type valence band. They have different parities and obey to selection 

rules 
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   (23) 

The case i j  is different from zero and gives rise to the expression 

   

0

*

, , , , ||

0

1
( ) ( ) ( , )y y

x

ik

c s g v pi g k cv

iv

d U e U P k g
v


  








  

   (24) 

The last integral in the zeroth approximation is of the allowed type in the definition of Elliott [26, 

27] and can be considered as a constant ||( , ) (0)cv cvP k g P


 which does not depend on wave 

vectors ||k


 and g . Due to these selection rules, derivatives / r 


 in expression (21) must be 

taken only from the periodic parts , , , ( )v p i qU 


 because all other integrals vanish.  

The integration on variable xR  engages only the plane wave functions and gives rise to the 

selection rule for the 1D wave numbers , , xg q k  as follows: 

  
( )1 2

( ) ( , )x xiR q g k

x kr x

x x

e q g k q g k
L L


  

         (25) 

The integral on variable yR  engages only Landau quantization functions ( )n yR  and gives rise to 

the third selection rule concerning numbers en  and hn  of the Landau levels for electrons and 

holes. It looks as 
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2

2
0

0* 2 * 2 2
0 0 ||( ) ( ( ) ) ( , ; )

x y

y y y

e h

k k
i lik R ik gl

y n y n y x e hdR R gl R g k l e e e n n k  






   


 ,  (26) 

where 

2
0

2 2

0 0
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ik yx x
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n n k dy y y e

e n n k n n k

  

 







  








 


 

Here, we took into account that Landau quantization functions ( )n y  are real. 

This selection rule coincides with formula (30) in the absence of the RSOC, and its 

interpretation remains the same. Once again one can underlain that, during the dipole-active 

band-to-band quantum transition, the numbers of the Landau levels in the initial starting band, as 

well as in the final arriving band, coincide, i.e.,   e hn n . It is equally true both in the absence and 

in the presence of the RSOC. 

Three separate integrations on ,  and x yR R


 taking into account selection rules (23), (25), 

and (26) lead to the expression 

  

2
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     (27) 

Here, the vectors of circular polarizations 
vM


 describing the valence electron states were 

introduced following formula (17). One can introduce also the vectors of the heavy hole circular 

polarizations 
hM


 in the form 

   

1 2

*

1 2

1
( ),   1,

2

1
( ),   1

2

v

h v

M v

M M h

a ia M
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     (28) 

The magnetoexciton states are characterized by quantum numbers hM , iR ,   and by wave 

vectors ||k


. 

The general expressions for the matrix elements are as follows: 

 

2
2

0
0 2

|| ||( , , ; , , , ; ) ( , ) (0) ( , ; ) ,
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i m m

   

   





 

      

  
  (29) 

Coefficients ||( , ; )iT cR k


 have the forms  
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   (30) 

The other matrix elements can be calculated in a similar way. They are 

2
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0
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2
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0
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x y

y

v

k k
i lik gl

i kr x M cv iq c R g k q g k P e e T R k    
 

  (31) 

They permit calculating the electron operator parts in Hamiltonian (20) and expressing them in 

terms of the magnetoexciton creation and annihilation operators determined as follows: 

  
2
0† † †

||
, , ,

2 2

1
ˆ ( , , , ) y

x x
i h

ik tl

ex h i k k
R t M t

t

k M R e a b
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    (32) 

Here, he electron and hole creation and annihilation operator were introduced 

   
, , ,

†

, , , , ,

,
i i

v h

R g c R g

v M q M q

a a

a b  




       (33) 

Here, we have supposed that the Coulomb electronhole interaction leading to the formation of 

the magnetoexciton is greater than the magnetoexcitonphoton interaction leading to the 

formation of the magnetopolariton. It means that the ionization potential of the magnetoexciton 

lI  is greater than the Rabi energy 
0 0

(0)R cv

z k

e
P

m l L








 . It was determined in [21]. 

The existence of the phase factors of the type 
2
0yik gl

e


 in expressions (29) and (31) similar with 

that appearing in the definitions of the magnetoexciton creation operators permits obtaining the 

expressions 
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     (34) 

In [21], the Hamiltonian of the electron-radiation interaction was deduced in the absence of the 

RSOC. In its presence, the mentioned Hamiltonian also can be expressed in a compact form in 

terms of the photon and magnetoexciton creation and annihilation operators. As earlier, we 

introduced the values 2

0/ 2N S l , 
zV SL , where 

zL  is the size of the 3D space in direction 

perpendicular to the layer. In the case of microcavity 
zL  equals cavity length 

cL . The electron-

radiation interaction has the form 
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                  (35) 

This expression is similar to the Hamiltonian in the absence of the RSOC. Now the Coulomb 

interaction between charged carriers in the presence of the RSOC will be investigated. 

 

4. The Coulomb interaction in the 2D electron-hole system under the influence of the 

Rashba spin-orbit coupling 

 

The Coulomb interaction in the 2D eh system taking into account the Rashba spinorbit 

coupling was discussed in [19, 22]. Below, we will remind these results including all valence 

electron states (12). In the present description, the multicomponent electron field contains a larger 

variety of the valence band states than in [19, 22]. For the very beginning, the properties of the 

density operator of electron field ˆ( )r


 and of its Fourier components ˆ ( )Q


 will be discussed. To 

this end, the Fermi-type creation and annihilation operators of the electron on different states 



Moldavian Journal of the Physical Sciences, Vol. 13, N1-2, 2014 
 

 74 

were introduced. They are denoted as †

, ,,
i iR g R ga a  for the conduction band Rashba-type states (16) 

( , ; )c iR g r , as †

, , , ,,
v m v mM g M ga a   for the spinor valence band states (12) ( , , ; )v v mM g r   and as 

†

, , , ,
,

v m v mM g M g
a a

    for other spinor valence band states (12) ( , , ; )v v mM g r   . These spinor-type 

functions have a form of a column with two components corresponding to two spin projections 

on the direction of the magnetic field. The conjugate functions ( , ; )c iR g r , ( , ; )c iR g r  and 

( , , ; )v v mM g r    have a form of a row with two components conjugate to the components of the 

columns. With the aid of the electron creation and annihilation operators and the spinor-type 

wave functions, creation and annihilation operators †ˆ ( )r  and ˆ ( )r  of the multi-component 

electron field can be written as 
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  (36) 

The density operator of electron field ˆ( )r


 and its Fourier components ˆ ( )Q


 are determined by 

the expressions 

    

†
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S. A. Moskalenko, E. V. Dumanov, I. V. Podlesny, M. A. Liberman, B. V. Novikov, S. S. Rusu, and V. M. Bajireanu 

 

75 

The density operator looks as 
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    (38) 

Fourier components ˆ ( )Q


 of the density operator determine the Coulomb interaction between 

the electrons. They will be calculated below taking into account spinor-type wave functions (12) 

and (16). For example, the first term in expressions (38) looks as 
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   (39) 

Following formula (22), it is necessary to separate the integration of the quickly varying periodic 

parts on volume 
0v  of the elementary lattice cell and the integration of the slowly varying 

envelope parts on lattice point vectors R


 as follows: 
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  (40) 

Here ( )O Q


 is an infinitesimal value much smaller than unity, tending to zero in the limit  

0Q  . It will be neglected in all calculations below. The calculation gives rise to the final form 
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         (41) 

Expression (41) looks as a product of one numeral factor 
1 1( ; ; )S R R Q


 , which concerns the 

concrete electron spinor state and another operator type factor of the general form 
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It will be met in all expressions listed below, but with different meanings of   and  , as follows: 
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One of the valence electron density fluctuation operator looks as 
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Here, we have taken into account the following property of the valence band periodic parts 
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They lead to Kronecker symbol ,v vM M   in expression (50) and in the next ones concerning the 

valence band as follows: 
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As usual, they obey to the equalities  
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      (47) 

Up till now, we have dealt with intraband density operators ˆ ( ; ; )c c Q  


 and ˆ ( ; ; )v v Q  


. 

Interband density operators ˆ ( ; ; )c v Q  


 and ˆ ( ; ; )v c Q  


 depend on the interband exchange 

electron densities of the type 
*

, , , , , , , ,

1
( ) ( ( ) ( ))

2xc s g Q v p x g v p y gU U iU     and its complex conjugate 

value. They contain the quickly oscillating periodic parts with different parities and the 

orthogonality integral on the elementary lattice cell has an infinitesimal value 
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 This integral is different from zero if one takes into account, for example, term y yiQ   appearing 

in the series expansion of function y yiQ
e


. It gives rise to interband dipole momentum 

cvd


 with 

the component  
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    (49) 

The Coulomb interaction depending on interband exchange electron densities ˆ ˆ( ) ( )cv vcQ Q  
 

 has 

a form of the dipoledipole interaction instead of the chargecharge interaction, which takes 

place only in the intraband cases. It is known as a long-range Coulomb interaction and gives rise 

to the longitudinal-transverse splitting of the three-fold degenerate levels of the dipole-active 

excitons in the cubic crystals [28, 29]. These effects with the participation of the 2D 
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magnetoexcitons have not been investigated up till now, to the best of our knowledge, and remain 

outside the present review article. 

Density operator ˆ ( )Q


 in the frame of electron spinor states (12) and (16) looks as 
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  (50) 

The first five terms of this expression depend on the intraband electron densities and determine 

the chargecharge Coulomb interaction. The last four terms depend on the interband electron 

densities and lead to the dipoledipole long-range Coulomb interaction. 

The strength of the Coulomb interaction is determined by coefficients , , ,n n n na b c d  of the spinor-

type wave function (12) and (16) as well as by the normalization and orthogonality-type integrals 

( , , )n m Q


 . They have the properties: 

    

2 2

4
,

, ,

( , , ) ( )

(0)

Q l

n m

n m n m

n m Q e A Q

A











 


      (51) 

Diagonal coefficients , ( )n nA Q


 with 0,1,3n   will be calculated below. The nondiagonal 

coefficients with n m  in the limit 0Q   are proportional to vector components 
iQ  in a degree 

of | |n m . They can be neglected in the zeroth order approximation together with other 

corrections denoted as ( )O Q


. It essentially diminishes the number of the actual components of 

density operator ˆ ( )Q


. 

 In the zeroth order approximation, neglecting the corrections of the order ( )O Q


, we will 

deal only with diagonal terms that permit the simplified denotations 

    2 2
0

4

ˆ ˆ( ; ; ) ( ; ),

( ; ; ) ( ; ) ( ; )
Q l

Q Q

S Q S Q e S Q

    

   




 

 

  
 

    (52) 

The concrete values of coefficients ( ; )S Q


 are 

    

2 2

1 0 0,0 1 1,1

2 0,0

,

2 2

3 3, 3 ,

( ; ) [| | ( ) | | ( )],

( ; ) ( ),

( ; ) ( ), 0,1,2,

( ; ) [| | ( ) | | ( )],

3

m m m

m m m m m m m

S R Q a A Q b A Q

S R Q A Q

S Q A Q m

S Q d A Q c A Q

m



   

  

 



 

 



  

 

 

  
   (53) 
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The calculated values of 
, ( )m mA Q


 equal  

   

2 2

0
0,0 1,1

2 2 4 4 6 6

3,3 0 0 0

( ) 1,  ( ) 1 ,
2

3 3 1
( ) 1

2 8 48

Q l
A Q A Q

A Q Q l Q l Q l

 
   

 

   

 


    (54) 

The diagonal part of density operator ˆ ( )Q


 looks as 
2 2

0

4ˆ ˆ ˆ( ) { ( ; ) ( ; ) ( , ; ) ( , ; )

ˆ( , ; ) ( , ; )}

v m

v m

Q l

i i v m v m

i M

v m v m

M

Q e S R Q R Q S M Q M Q

S M Q M Q





    

  




 

  



 



    

     (55) 

It contains two separate contributions from the conduction and valence bands. The latter 

contribution in turn can be represented as due to the electrons of the full filled valence band 

extracting the contribution of the holes created in its frame. To show it, one can introduce the 

hole creation and annihilation operators as follows: 

    

†

, , , , ,

†

, , , , ,

,

,

, 0,1, 2,

, 3

h v

h v

M q v M q

M q v M q

m

m

b a

b a

m

m

 

 

 

 

 

 







 

 

      (56) 

This leads to the relation 

  
2

0

ˆ ˆ( , , ) ( ,0) ( , , ),

2

v v kr h hM Q N Q M Q

S
N

l

    



  



  

     (57) 

where hole density operator ( , , )h hM Q 


 looks as 

  
2
0 †

, , , ,
2 2

ˆ ( , , ) y

x x
h h

iQ tl

h h Q Q
M t M t

t

M Q e b b
 

 


 



     (58) 

The constant part ( ,0)krN Q


in (57) created by electron of the full filled valence band is 

compensated by the influence of the positive electric charges of the background nuclei. In the 

jelly model of the system, their presence is taken into account excluding the point 0Q 


 from the 

Hamiltonian of the Coulomb interaction [29]. Taking into account the fully neutral system of the 

bare electrons and the positive jelly background, we will operate only with the conduction band 

electrons and with the holes in the valence band. In this electronhole description, density 

operator ˆ ( )Q


 becomes equal to 

    
ˆ ˆ ˆ( ) ( ) ( ),

0

e hQ Q Q

Q

   



  

      (59)  

where  



Moldavian Journal of the Physical Sciences, Vol. 13, N1-2, 2014 
 

 80 

 

2 2
0

2 2
0

, ,

4

, ,

4

1,2 1,2

ˆ ˆ ˆ( ) ( ; ) ( , ; ) ( ; ) ( , ; )

ˆ ˆ{ ( ; ) ( , ; ) ( ; ) ( , ; )},

ˆ ˆ ˆ( ) ( ) ( ; ) ( ; ) ( ;

h m h m

h m h m

h m h h m m h h m

M M

Q l

m h h m m h h m

M M

Q l

e c i e i i

i i

Q S Q M Q S Q M Q

e S Q M Q S Q M Q

Q Q S R Q R Q e S R

 

 

      

     

  





 


 



 

  

 

  

 

 

 

    
 

   

   
 ˆ) ( ; )e iQ R Q

 

  (60) 

The Hamiltonian of the Coulomb interaction of the initial bare electrons can be expressed in 

terms of the electron field and density operators (36) and (50) as follows: 

  

† †

(1 2) †

†

2

0

1 ˆ ˆ ˆ ˆ1 2 (1) (2) (1 2) (2) (1)
2

1 ˆ ˆˆ( ) 1 2 (1) (2) (1)
2

1 ˆ ˆˆ( ) ( ) ( ) ( ),
2

2
( )

| |

Coul

iQ

Q

iQr

Q

H d d V

V Q d d e

V Q dre r Q r

e
V Q

S Q











      

   

   



 

  

  

  







 

  

   




    (61) 

( )V Q


 is the Fourier transform of the Coulomb interaction of the electrons situated on the surface 

of the 2D layer with area S and dielectric constant 
0  of the medium. The expression 

†ˆ ˆˆ( ) ( ) ( )r Q r  
 

 contains density operator ˆ ( )Q 


 intercalated between field operators †ˆ ( )r


 

and ˆ ( )r


. Operator ˆ ( )r


 cannot be transposed over operator ˆ ( )Q 


 because they do not 

commute, but its nonoperator part expressed through the spinor-type wave function can be 

transposed forming together with the conjugate wave function of field operator †ˆ ( )r


 a scalar. 

After the integration on coordinate r


, the quadratic intercalated density operators will appear in 

the form 

  

2
0

22
00

†

, ,
2 2

† †

, , , ,
2 2 2 2

,

ˆ( ; ; ; ; ) ( ; ; )

ˆ ˆ ˆ( ; ; ) ( ; ; ) ( ; ;0)

y

x x

y

x x x x

iQ tl

Q Q
t t

t

iQ sliQ tl

Q Q Q Q
t x s y s t

t s

x

K x Q e a x y Q a

e e a a a a

Q x y Q y



 

 



   

      

 



   

  

 

  





 

 

  (62) 

The same relations remain in the electronhole description. 

The commutation relations between the density operators are the following: 



S. A. Moskalenko, E. V. Dumanov, I. V. Podlesny, M. A. Liberman, B. V. Novikov, S. S. Rusu, and V. M. Bajireanu 

 

81 

2
0

2
0

2 2
0 0

†

, ,
2 2

†

, ,
2 2

[ ] [ ]

2 2
, ,

2

0
,

ˆ ( ; ; ) ,

ˆ ( ; ; ) ,

ˆ ˆ ˆ ˆ[ ( ; ; ), ( ; ; )] ( ; ; ) ( ; ; )

[ ]
ˆcos [ ( ;

2

y

x x

y

x x

z z

iQ tl

Q Q
t t

t

iP tl

P P
x t y t

t

i P Q l i P Q l

x y

z
x

Q e a a

x y P e a a

Q x y P y P Q e x P Q e

P Q l
y

 

 



  



         

  

 

 

  





    

 
  

 




  





    



,

2

0
, ,

ˆ; ) ( ; ; )]

[ ]
ˆ ˆsin [ ( ; ; ) ( ; ; )]

2

y

z
x y

P Q x P Q

P Q l
i y P Q x P Q



 

  

     

   

 
    

 

  


  

         (63) 

Factor 

2 2
0

4

Q l

e


 arising from the product of the density operators ˆ ( )Q


 and ˆ ( )Q 


 being multiplied 

by coefficient ( )V Q


 gives rise to coefficient ( )W Q


 describing the effective Coulomb interaction 

under the conditions of the Landau quantization 

    

2 2
0

2( ) ( )
Q l

W Q V Q e



 

      (64) 

Excluding the intercalations, the Hamiltonian of the Coulomb interaction in the presence of the 

Landau quantization and Rashba spinorbit coupling has the form: 

,

,

, ,

, ,

, ,

1
ˆ ˆ ˆ( ){ ( ; ) ( ; )[ ( ; ) ( ; ) ( ;0)]

2

ˆ ˆ ˆ( , ; ) ( , ; )[ ( , ; ) ( , ; ) ( , ;0)]

( , ; ) (

v v

v v m m

v v m m

Coul i j i j i j i

i jQ

v m v m v m v m M M m m v m

M M

v m

M M

H W Q S R Q S R Q R Q R Q R

S M Q S M Q M Q M Q M

S M Q S M

 

 

   

         





 


   







    

     



 

 

 



    

   


, ,

1,2 ,

1,2 ,

1,2 ,

ˆ ˆ ˆ, ; )[ ( , ; ) ( , ; ) ( , ;0)]

ˆ ˆ( ; ) ( , ; ) ( ; ) ( , ; )

ˆ ˆ( ; ) ( , ; ) ( ; ) ( , ; )

(

v v

v m

v m

v m

v m v m v m M M m m v m

i v m i v m

i M

i v m i v m

i M

v

i M

Q M Q M Q M

S R Q S M Q R Q M Q

S R Q S M Q R Q M Q

S M







        

   

   


   

   



 





   

   

   



 

 

 

  

   

   

1,2 ,

, ,

, ,

ˆ ˆ, ; ) ( ; ) ( , ; ) ( ; )

ˆ ˆ( , ; ) ( ; ) ( , ; ) ( ; )

ˆ ˆ( , ; ) ( , ; ) ( , ; ) ( , ; )

( , ; ) (

v m

v v m m

v v m m

m i v m i

v m i v m i

i M

v m v m v m v m

M M

v m

M M

Q S R Q M Q R Q

S M Q S R Q M Q R Q

S M Q S M Q M Q M Q

S M Q S



 

 

   

   

     











 



 

 







  

   

    



 

 

 

   

   

   


ˆ ˆ, ; ) ( , ; ) ( , ; )}v m v m v mM Q M Q M Q    

 
 

  
(65) 

 

The Hamiltonian of the Coulomb interaction in the electronhole representation looks as 
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,

,

, ,

, ,

, ,

1
ˆ ˆ ˆ( ){ ( ; ) ( ; )[ ( ; ) ( ; ) ( ;0)]

2

ˆ ˆ ˆ( , ; ) ( , ; )[ ( , ; ) ( , ; ) ( , ;0)]

( , ;

h h

h h m m

h h m m

Coul i j e i e j i j e i

i jQ

h m h m h h m h h m M M m m h h m

M M

h m

M M

H W Q S R Q S R Q R Q R Q R

S M Q S M Q M Q M Q M

S M

 

 

   

         





 


   







    

     



 

 

 



    

   


, ,

, ,

, ,

ˆ ˆ ˆ) ( , ; )[ ( , ; ) ( , ; ) ( , ;0)]

ˆ ˆ( , ; ) ( , ; ) ( , ; ) ( , ; )
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h h

h h m m
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h m h h m h h m M M m m h h m
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M M
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M M

Q S M Q M Q M Q M

S M Q S M Q M Q M Q

S M Q S M Q M

 

 

        

     

   







   

   

 

 









    

    

 

 

 

  

   

 

,

,

,

,

ˆ; ) ( , ; )

ˆ ˆ( ; ) ( , ; ) ( ; ) ( , ; )

ˆ ˆ( ; ) ( , ; ) ( ; ) ( , ; )

ˆ ˆ( , ; ) ( ; ) ( , ; ) ( ; )

(

h m

h m

h m

h m

m h h m

i h m e i h h m

i M

i h m e i h h m

i M

h m i h h m e i

i M

i M

Q M Q

S R Q S M Q R Q M Q

S R Q S M Q R Q M Q

S M Q S R Q M Q R Q
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ˆ ˆ, ; ) ( ; ) ( , ; ) ( ; )}h m i h h m e iM Q S R Q M Q R Q     
   

(66) 

In the concrete variant named as 
1F , where the electrons are in state 

1R , whereas the holes are in 

state 
3
  with a given value of 

hM , Hamiltonian (66) looks as 

2 2 2

1 3 0 1 1,1 1 1 1

2 2 2

0 3 3,3 3 3 3

2 2 2 2

0 1 1,1 0 3 3,3

1
ˆ ˆ ˆ( ; ) ( ){(| | | | ( )) [ ( ; ) ( ; ) ( ;0)]

2

ˆ ˆ ˆ(| | | | ( )) [ ( , ; ) ( , ; ) ( , ;0)]

ˆ2(| | | | ( ))(| | | | ( ))

Coul e e e

Q

h h h h h h

H R W Q a b A Q R Q R Q R

d c A Q M Q M Q M

a b A Q d c A Q

   

     





    

 

    

    

  


   

  

 
1 3

ˆ( ; ) ( , ; )}e h hR Q M Q   
 

 (67) 

In the absence of the RSOC, we have 0 0 1a d    and 1 3 0b c  . In the variant 1 1 3( , )F R    

described by Hamiltonian (67), the 2D magnetoexciton can be described by the wave function 

  
2
0

1 3

† †

1
, , ,

2 2

1
( , ) 0y

x x
h

iK tl

ex K K
R t M t

t

F K e a b
N   

  


    (68) 

where 0  is the vacuum state determined by the equalities 

    , ,0 0 0t ta b         (69) 

In [22], other seven combinations of the electron and hole states were considered as follows: 

  
2 2 3 3 1 0 4 2 0 5 1 4

6 2 4 7 1 1 8 2 1

( , ), ( , ), ( , ), ( , ),

( , ), ( , ), ( , )

F R F R F R F R

F R F R F R

   

  

 



   

  
   (70) 

In all these cases, the exciton creation energies were calculated using the formulas 

   

( , ) ( ) ( , )

( ) ( ) ( ),

( , )

ex n cv n ex n

cv n g e h

n

E F k E F I F k

E F E E E

F

 

 

 

  



 

     (71) 
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Here, gE  is the semiconductor energy gap in the absence of a magnetic field. ( , )ex nI F k


 is the 

ionization potential of the magnetoexciton moving with wave vector k


 . 

 The Hamiltonian of the Coulomb electron-electron interaction in the case of eh pairs 

with the electrons in the degenerate state 
1( , )eS R  and the holes in the degenerate state 

( , , )h h mS M    has the form 





1

1 1 1 1

1 1

( , )

1 ˆˆ ˆ( ; ) ( ; ) ( ; ) ( )
2

ˆˆ ˆ( ; ) ( , ; ) ( , ; ) ( , )

ˆ ˆ2 ( , ; ) ( ; ) ( , ; )

Coul m

e e e e e

Q

h h m h h m h h m h h m

e h m e h h m

H R

W R Q R Q R Q N R

W Q M Q M Q N M

W R Q R Q M Q



 

     

   





   



 





    

    
 

 


  

  

  

  (72) 

Once again, the electron and hole density operators are recalled: 
2
0

1 1

2
0

†

1
, ,

2 2

†

, , , ,
2 2

1 1

ˆ ( ; ) ,

ˆ ( , ; ) ,

ˆ ˆˆ ˆ( ) ( ;0),    ( , ) ( , ;0)

y

x x

y

x x
h m h m

iQ tl

e Q Q
R t R t

t

iQ tl

h h m Q Q
M t M t

t

e e h h m h h m

R Q e a a

M Q e b b

N R R N M M

 



 

   

 

 



 

 





 








  (73) 

Coefficients ( )i jW Q


 in (72) are 

 

 
 

 

2
2 2

1 0 0,0 1 1,1

2
2 2

3 3, 3 ,

2 2

1 0 0,0 1 1,1

2 2

3 3, 3 ,

( ; ) ( ) ( ) ( ) ,

( ; ) ( ) ( ) ( ) ,   3,

( , ; ) ( ) ( ) ( )

( ) ( ) ,  3

e e

h h m m m m m m m

e h m

m m m m m m

W R Q W Q a A Q b A Q

W Q W Q d A Q c A Q m

W R Q W Q a A Q b A Q

d A Q c A Q m







  

   





 

  

 

  

  

  

   

   

   

 

   (74) 

The normalization conditions take place 
2 2

0 1

2 2

3

1,

1,

3

m m

a b

d c

m

 



 

 



      (75) 
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In the actual case 3m   we obtain 

 

2 2
0

2
2

1 2 2

1 0

2
2

3 2 2 4 4 6 6

3 0 0 0

22

31 2 2 2 2 4 4 6 6

1 3 0 0 0 0

( ; ) ( ) 1 ,
2

3 1
( ; ) ( ) 1 3 ,

2 4 24

3 1
( , ; ) ( ) 1 1 3 ,

2 2 4 24

( )

e e

h h

e h

Q l

b
W R Q W Q Q l

c
W Q W Q Q l Q l Q l

cb
W R Q W Q Q l Q l Q l Q l

W Q e





















 
   

 
 

 
        

 

                 



 

 

 

 2

2

0

2
( ),   ( )

e
V Q V Q

S Q






 


  (76) 

The terms proportional to 
1

ˆ ( )eN R  and ˆ ( , )h h mN M    in (72) have coefficients 
1( )eI R  and ( )h mI   , 

which describe the Coulomb self-actions of the electrons and holes, are listed below together with 

the binding energy of the electron and the hole forming the magnetoexciton. The last value is 

determined by the diagonal matrix element of Hamiltonian (72) calculated with wave function 

(68) as follows: 

  

1 1 1 1

1 1 1

2
2 0

1 1 1

1 1

1 1

( , ) ( , ) ( ) ( , ),

( ) ( ; ) ( ; ; ),

[ ]
( , ) ( ; ; ) 2 ( ; ; )sin ,

2

lim ( ; ; ) ( ; ),

1
( ) ( ; ),  

2

ex Coul ex l

l l m e h m

Q

z
m e h m

Q

m l m
k

e e e

Q

F k H F k I F E F k

I F I R W R Q

k Q l
E F k E R k W R Q

E R k I R

I R W R Q

 

 

 

 



 



 





    

 

 
   

 



















  



 
  





1 1

1
( ) ( ; ),

2

( ; ) ( ) ( )

h m h h m

Q

S m e h m

I W Q

I R I R I

 

 

 



 



 




          (77) 

The binding energy of the magnetoexciton and its ionization potential, which has the opposite 

sign as compared with the binding energy, tend to zero when wave vector k


 tends to infinity and 

the magnetoexciton is transformed into a free eh pair: 
0

,1 1 1 1

0

ˆ( ) ( ) ( )
2

ˆ( , ) ( ) ( , )
2

g

mex e e e e

g

h h m h m h h h m

E
H E R I R N R

E
E M I N M



     

 
      
 

 
     
 

    (78) 

Here, semiconductor energy band gap 0
gE  in the absence of the Landau quantization was 

introduced. 
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Now, instead of electron and hole density operators ˆ ( )e Q


 and ˆ ( )h Q


, we will introduce the 

density operators of the optical plasmon denoted as ˆ ( )Q


 and the acoustical plasmon denoted as 

ˆ ( )D Q


 following the relations 

ˆ ˆ ˆ( ) ( ) ( ),

ˆ ˆ ˆ( ) ( ) ( ),

ˆˆ ( ) ( )
ˆ ( ) ,

2

ˆ ˆ( ) ( )
ˆ ( )

2

e h

e h

e

h

Q Q Q

D Q Q Q

Q D Q
Q

D Q Q
Q

  

 







 

 







  

  

 


 


     (79) 

Here, for simplicity, many indices that label the electron, hole, and plasmon density operators are 

omitted. But they must be kept in mind and may be restored in concrete cases.    

In the plasmon representation, Hamiltonian ,1mexH  (78) looks as 

 

 

,1 1

1

ˆ (0)
( ; , )

2

ˆ (0)
( ; , )

2

mex mex h m mex

e h h m e h

D
H E R M

G R M

 


  







  

  

    (80) 

Here, the sums and differences of the Landau quantization level energies, the Coulomb self-

interaction terms, and the chemical potentials are defined as follows: 

1 1 1

0

1 1

1 1 1

( ; , ) ( ; , ) ( ; ),

( ; , ) ( ) ( , ),

,

( ; , ) ( ) ( , ) ( ) ( )

mex h m g h m l m

g h m g e h h m

ex e h

e h h m e h h m e h m

E R M E R M I R

E R M E E R E M

G R M E R E M I R I

  

 

  

  

  

 

  



 

  

 

   

  (81) 

The remaining part ,2mexH  of Hamiltonian (72), after the excluding of the linear terms, is 

quadratic in the plasmon density operators. It has the form 



 

,2 0 0

0

1 ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
2

ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( )

mex a a

Q

a

H W Q Q Q W Q D Q D Q

W Q Q D Q D Q Q

 

 

 



    

   


     

    
  (82) 

The new coefficients are expressed in terms of the former ones by the formulas 

 

 

 

0 0

0

1
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1
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4

1
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a e e h h
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W Q W Q W Q

   

   

  

  

  

 

   

   

  

    (83) 

In the case of the eh pairs of the type 1( ; )mR    they take the form 
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         (84) 

In a special case 3m   we have 
2

22

1 2 2 2 2 4 4 6 6

0 0 1 0 0 0 0

2
22

1 2 2 2 2 4 4 6 6

1 0 0 0 0

22

1 2 2 2 2

0 1 0 0

3 1
( ; ; ) ( ) 1 3 ,

4 4 4 24

3 1
( ; ; ) ( ) 3 ,

4 4 4 24

3
( ; ; ) ( ) 1 3

4 4 4

m

m

m

a a m

m

a m

cb
W R Q W Q Q l Q l Q l Q l

cb
W R Q W Q Q l Q l Q l Q l

cb
W R Q W Q Q l Q l

























 
         

 

 
         

 

   

 

 

 
4 4 6 6

0 0

22

1 2 2 2 2 4 4 6 6

0 0 0 0

1

24

3 1
3

4 4 4 24

m

Q l Q l

cb
Q l Q l Q l Q l



 
      

 

 
           

 

         (85) 

Side by side with the magnetoexciton subsystem, the photon subsystem does exist. In our case, it 

is composed of photons with a given circular polarization, for example, 
k

 


. Their wave vectors 

3 ||

c

k a k
L


 

 
 have the same quantized longitudinal component equal to 

cL


, where 

cL  is the 

resonator length and arbitrary values of the in-plane 2D vectors ||k


. The photon energies are 

2
2

||2

0

k

c

c
k

n L


  


 , where 0n  is the refractive index of the microcavity. The full number of the 

photons captured into the resonator is determined by their chemical potential ph . 

The zeroth order Hamiltonian of the photons in the microcavity looks as 

 
||

†

0, , ,ph phk k k
k

H c c
 

     


      (86) 

where 
†

, ,
,

k k
c c

 
   are the creation and annihilation photon operators and   denotes a definite 

circular polarization. Only the case     will be considered. It must be supplemented by the 
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Hamiltonian of the magnetoexcitonphoton interaction deduced above in a more general case. In 

the case of dipole-active band-to-band quantum transition with the combination of the eh states 

1 3( , )R    we have 

 

 

* †

|| 1 3 ||,

* †

|| 1 3 ||,

ˆ( ; ; ) ( )

ˆ( ; ; ) ( )

h

h

mex ph M exk k
k

M exk k

H k R c k

k R c k

   

   

 

 

 



   

  





 


 

  

  
    (87) 

The interaction coefficient is as follows: 

   
|| 1 3 || 1 3

0 0

* * * *

|| 1 3 0 0 || 1 3 ||

( ; ; ) (0) ( ; ; ),

( ; ; ) (0,0; ) (1,3; )

cv

c k

e
k R P T k R

m l L

T k R a d k b c k

  


  

 

  

 
  
 

 



 

  
 

    (88) 

The magnetoexciton creation and annihilation operators were written in a shortened form in (87) 

because there are too many indices in its full description as follows: 
2
0

1 3

† † † †

1 3
, , ,

2 2

1ˆ ˆ( ) ( ; ; , ) y

x x
h

iQ tl

ex ex h Q Q
R t M t

t

Q Q R M e a b
N 






  
   

 
   (89) 

The full Hamiltonian of the magnetoexcitonphoton system for a more actual combination 

1 3( , )R    may be written 

,1 0, ,2mex ph mex ph mexH H H H H          (90) 

Its remarkable peculiarity is the presence only of the two-particle integral plasmon and 

magnetoexciton operators, rather than of the single-particle electron and hole Fermi operators. It 

permits considerably simplifying the deduction of their equations of motion. For this reason, the 

commutation relations between the full set of four two-particle integral operators 
†ˆ ˆˆ( ), ( ), ( )exQ D Q Q 

  
 and ˆ ( )ex Q


 are needed. They are listed below 

   

   

       †

ˆ ˆˆ ˆ ˆ( ), ( ) ( ), ( ) 2 sin ( , ) ,

ˆ ˆˆ ( ), ( ) 2 sin ( , ) ,

1ˆ ˆ ˆˆ( ), ( ) ( , ) [ sin ( , ) cos ( , ) ],

[ ]
( , ) ( , )

ex ex kr

z

Q P D Q D P i Z P Q Q P

Q D P i Z P Q D P Q

P Q P Q i Z Q P Q P Z Q P D Q P
N

P Q
Z P Q Z Q P

  



 

        

   
 

       
 


  

      

    

          


  

 

 

 

2

0

†

† †

† †

( , ) ( , ),
2

1ˆ ˆ ˆ( ), ( ) 1 (0),

ˆ ˆˆ ( ), ( ) 2 sin ( , ) ( ),

ˆ ˆˆ ( ), ( ) 2 sin ( , ) ( ),

ˆ ˆ ˆ( ), ( ) 2cos ( , ) ( ),

ˆ

ex ex

ex ex

ex ex

ex ex

l
Z P Q Z Q P

P P D
N

Q P i Z P Q P Q

Q P i Z P Q P Q

D Q P Z P Q P Q

D





    

    
 

    
 

     
 

    
 

  

 

    

    

    

 ˆ ˆ( ), ( ) 2cos ( , ) ( )ex exQ P Z P Q P Q     
 

    

        (91)  
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5. The magnetoexcitons in the Bose-gas model description 

 

The Hamiltonian describing the 2D eh pairs with electrons and holes situated on the 

given Landau quantization levels and interacting between themselves through the Coulomb 

forces was represented as a sum: ,1 ,2mex mexH H . It is expressed in terms of plasmon density 

operators ˆ ( )Q


 and ˆ ( )D Q


. It is useful to represent it in the model of weakly interacting Bose 

gas. To this end, the wave functions describing the free single magnetoexcitons ( )mex P


 as well 

as the pairs of the free magnetoexcitons with wave vectors P


 and R


 ( ), ( )mex mexP R 
 

 were 

introduced: 

  

†

† †

ˆ( ) ( ) 0 ,

ˆ( ) 0 ( ),

ˆ ˆ( ), ( ) ( ) ( ) 0 ,

ˆ ˆ( ), ( ) 0 ( ) ( )

ex ex

ex ex

ex ex ex ex

ex ex ex ex

P P

P P

P R P R

P R R P





 

 

 

 

  

  

 

 

   

   

     (92) 

where 0  is the vacuum state of the semiconductor. They were used to calculate the matrix 

elements 

  
,1 ,2

1 1 2 2 1 1 ,1 ,2 2 2

( ) ( ) ( ) ,

( , ; , ) ( ) ( ) ( ) ( )

mex ex mex mex ex

ex ex mex mex ex ex

E P P H H P

W P R P R P R H H P R

 

   

 

 

  

          (93) 

With these matrix elements and with the magnetoexciton creation and annihilation operators, the 

new Hamiltonian in the model of weakly interacting Bose gas can be constructed. It looks as 

 

1 1 2 2

0 int

†

0

† †

int 1 1 2 2 1 1 2 2

, , ,

1 1 2 2

ˆ ˆ ˆ ,

ˆ ˆ ˆ( ) ( ) ( ),

ˆ ˆ ˆ ˆ ˆ( , ; , ) ( ) ( ) ( ) ( ),

mex ex ex

P

ex ex ex ex

P R P R

H H H

H E P P P

H W P R P R P R R P

P R P R

 

  

    

  







   

  

       

   

   (94) 

Recall that the magnetoexciton creation and annihilation operators in turn are constructed from 

electron and hole creation and annihilation Fermi-type operators 
† †, , ,p p p pa a b b  as follows: 

   
2
0† † †

2 2

1ˆ ( ) y

x x

iP tl

ex P P
t t

t

P e a b
N   

  


     (95) 

and their composition in all calculations is taken into account. Some of them are demonstrated 

below using commutation relations (91): 
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† †

†

† 2 †

† 2 †

0 0 0,

ˆ ˆˆ ( ) 0 ( ) 0 ( ) 0 0,

ˆ ˆ ˆ(0) ( ) 0 2 ( ) 0 ,

ˆˆ (0) ( ) 0 0,

ˆ ˆˆ ˆ( ) ( ) ( ) 0 4sin ( ( , )) ( ) 0 ,

ˆ ˆ ˆ ˆ( ) ( ) ( ) 0 4cos ( ( , )) ( ) 0 ,

ˆ ˆˆ( ( ) ( )

p p

ex

ex ex

ex

ex ex

ex ex

a b

Q D Q Q

D P P

P

Q Q P Z P Q P

D Q D Q P Z P Q P

Q D Q





 



 

   

  

 

   

   

 

  

 



    

    

 
†ˆˆ( ) ( )) ( ) 0 0exD Q Q P   

  

  (96) 

In the present model, the main role is played by the magnetoexciton creation and annihilation 

operators, rather than by the plasmon density operators. 

Magnetoexciton creation energy ( )mexE P


 from Hamiltonian 
0H  consists of three parts: 

1 1 1

2 2

0 0 1 1

1 1 1

( ) ( ; , ; ) ( ; , ) ( ; )

2 ( ; ; )sin ( ( , )) 2 ( ; ; )cos ( ( , ))

( , ; ) ( ; ) ( ; ; )

mex mex h m g h m S m

m a a m

Q Q

g h m l m m

E P E R M P E R M I R

W R Q Z P Q W R Q Z P Q

E M R I R E R P

  

 

  

  

 

 

  

   

  

  

  

 

    



      (97) 

The first component 1( , ; , , )g e h h mE S R S M  
 plays the role of the band gap, whereas difference 

1 1( ; ) ( ; ; )l m mI R E R P  


 determines the resulting ionization potential of the moving 

magnetoexciton with wave vector P


. In the limiting case P


, when 

1 1lim ( ; ; ) ( ; )m l m
P

E R P I R  





, the resulting ionization potential vanishes and the eh pair becomes 

unbound. Nevertheless, the presence of positive term 
1( ; ; )mE R P 


 in formula (97) plays the role 

of the kinetic energy of the magnetoexciton at least in the region of the small values of wave 

vector P


, where this term can be represented in a quadratic form 
2 2

2 ( )

P

M B


 with effective mass 

( )M B  depending on magnetic field strength B. Zeroth-order Hamiltonian 
0H  (94), together with 

the similar Hamiltonian for the cavity photons and with the Hamiltonian describing the 

magnetoexcitonphoton interaction, gives rise to quadratic Hamiltonian 2H  forming the base of 

the polariton conception. It looks as 

 
|| ||

||

† †

2 || || || , ,

* † * †

|| || || ||, ,

ˆ ˆ( ) ( ) ( )

ˆ ˆ( )( ) ( ) ( )( ) ( )
h h

mex ex ex k k k
k k

M ex M exk k k k
k

H E k k k c c

k c k k c k



     

 

 

 

    

      
 

 



  
 

   


  


          (98) 

In this expression, the chemical potentials of the magnetoexcitons and the photons are omitted 

until the single-particle polariton formation is investigated. They will be restored when the 

collective properties of the polaritons will be discussed. The diagonalization of quadratic form 

(98) is achieved introducing the polariton creation and annihilation operators 
|| ||

†̂ ˆ,
k k

L L   in the form 
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of a linear superposition 

   
||

|| || || ,
ˆ ( ) ( ) ( )exk k
L x k k y k c


   

  
      (99) 

It is a simplified form without the antiresonant terms because they are not introduced in the 

starting Hamiltonian 
2H  (98). Quantities  

||( )x k


 and 
||( )y k


 are known as Hopfield coefficients 

[28, 29]. In the case where the scalar product of two circular polarized vectors equals 1, the 

energy spectrum of two polariton branches looks as 

 
|| 2 2

|| || ||

( ) 1
( ) ( ( ) ) 4 | ( ) |

2 2

mex k
mex k

E k
k E k k


  


   





  

             (100) 

The Rabi frequency for the eh pair in the states 
1 3( , )R    is as follows:  

  0 0

0 0

(0) 1
| | (0)

hR cv Mk

c k

e
P a d

m l L


  



  
 

 
           (101) 

In the absence of the RSOI, coefficients 
0 0 1a d   and expression (101) coincides with formula 

(12) in [21]. 

The Hopfield coefficients obey to the normalization condition and are equal to 
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                (102) 

The last equality results from the fact that polariton energy spectrum ||( )p k


 , the 

magnetoexciton and cavity photon bare energies are real entities. This relation will be used below 

at point || 0k 


 where these phases will be simply denoted as ,  and    . 

Now the breaking of the gauge symmetry of the 2D magnetoexcitonphoton system 

leading to the BEC of the magnetopolaritons on the lower polariton branch at point || 0k 


 will 

be discussed. 

 

6. Breaking of the gauge symmetry and the mixed photonmagnetoexcitonacoustical 

plasmon states 

 

A method to introduce the coherent macroscopic polariton states in a system of 2D eh 
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pairs and photons captured in the microcavity was proposed in [30, 31]. It was assumed that the 

eh pairs were excited on the quantum well embedded into the microcavity and interacted with 

the photons captured in the resonator giving rise to the 2D WannierMott excitons and polariton 

formation. As was shown in [30], the proposed method is equivalent to the u-v Bogoliubov 

transformation for the electron and hole Fermi operators and to Bogoliubov displacement 

transformation for the photon Bose operators. This method will be now applied to the case of 2D 

magnetoexcitons and photons in microcavity with the aim to investigate the BEC of 

magnetopolaritons in the state with || 0k 


 on the lower polariton branch. The unitary 

transformation proposed in [30] looks as 

     †

0 0( ) expp pD N N L L             (103) 

where pN  is a macroscopic number of the condensed polaritons at point || 0k 


 of the lower 

polariton branch. The cavity photon with || 0k 


 has a quantized longitudinal projection of its 

wave vector k


 equal to / cL . Only the photons with a given circular polarization are 

considered. In this case, we have 

   

0
,

ˆ (0) (0) (0) ,

(0) (0) ,

(0) (0)

c

ex

L

i

i

L x y c

x x e

y y e








  





            (104) 

and the starting unitary transformation can be factorized in two independent unitary 

transformations acting separately in two subsystems of magnetoexcitons and of the photons as 

follows: 

  †

†

, ,

( ) ( (0) ) ( (0) ),

ˆ ˆ( (0) ) exp (0) (0) (0) ,

( (0) ) exp (0)

c c

p ex p ph p

i i

ex p p ex ex

i i

ph p p

L L

D N D N x D N y

D N x N x e e

D N y N y e c e c

 

 

 





 



    
 

  
    

    

         (105) 

Taking into account the expressions for the magnetoexciton operators 

     

† † †1ˆ (0) ,

1ˆ (0)

ex t t

t

ex t t

t

a b
N

b a
N





 

 




          (106) 

one can transcribe operator ( (0) )ex pD N x  in the form ( (0) ) tzz

ex p

t

D N x e e  , where 

  
 

 

†

† †

ˆ ˆ(0) (0) (0) ,

(0)

i i

p ex ex t

t

i i

t p t t t t

z N x e e z

z x e a b e b a

 

 





 

    

 


          (107) 

The unitary transformations of the Fermi operator are 
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1

†

1

†

( (0) ) ( (0) )

cos( (0) ) sin( (0) ),

( (0) ) ( (0) )

cos( (0) ) sin( (0) )
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t t

z z
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i
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i
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D N x a D N x e a e

a v x b e v x

D N x b D N x e b e

b v x a e v x

















  





  

 

  

 

         (108) 

Here, the filling factor of the Bose-Einstein condensate was introduced  

    
2p

p

N

N
              (109) 

Side by side with unitary transformations (108) for the single-particle Fermi operators, one can 

also obtain the transformations for the two-particle integral operators. They were obtained using 

commutation relations (91) and look as follows 

ˆ ˆ

ˆ ˆ

ˆ ˆ†

† †

ˆ ˆ( ) ( ) ˆcos(2 (0) ) ( )sin(2 (0) ),

ˆ ( )ˆ ˆ( ) ( ) cos(2 (0) ) sin(2 (0) ),
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1
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z z
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( ) 1
| (0) | [cos 2 | (0) | 1] ( ),

2

1 ( ) 1
( ) ( ) sin 2 | (0) | [cos 2 | (0) | 1] ( )

2 2

p p

z i z i

ex ex p p

D Q
v x v x Q

N

D Q
e e Q e e Q v x v x Q
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          (110) 

As one can see, the superposition of the magnetoexciton creation and annihilation operators in the 

form ( )Q


 forms a coherent mixed state with acoustical plasmon density operator 
ˆ ( )D Q

N



. These 

mixed magnetoexcitonplasmon states were discussed in [3234]. 

 The full Hamiltonian of the magnetoexciton-photon system consists of four parts as 

follows: 

    ,1 0, ,2
ˆ ˆ ˆ ˆ ˆ

mex ph mex mex phH H H H H               (111) 

It will be subjected to unitary gauge transformation (105), which means calculation of the 

following unitary transformations: 
1

,1 ,2
ˆ ˆ( | (0) |)( ) ( | (0) |)ex p mex mex ex pD N x H H D N x , 1

0,
ˆ( | (0) |) ( | (0) |)ph p ph ph pD N y H D N y , 

1 1ˆ( | (0) |) ( | (0) |) ( | (0) |) ( | (0) |)ex p ph p mex ph ph p ex pD N x D N y H D N y D N x 

  

 

The first of them is 
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1
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            (112) 

The second one looks as  

   



1

,2 ,2

2

0 0

2

ˆ ˆ( | (0) |) ( | (0) |)

1 ˆ ˆˆ ˆ( ) ( ) ( ) ( ) cos (2 | (0) |) ( ) ( )
2

sin (2 | (0) |) ( ) ( )

ˆ ˆcos(2 | (0) |) sin(2 | (0) |) ( ( ) ( ) ( ) ( ))

mex ex p mex ex p

a a p

Q

p

p p

H D N x H D N x

W Q Q Q W Q v x D Q D Q

v x N Q Q

v x v x N D Q Q Q D Q

 

 

 



 

 

    


  

   






     

 

   


0

ˆ ˆˆ ˆ( ) cos(2 | (0) |) ( ( ) ( ) ( ) ( ))

ˆ ˆsin(2 | (0) |) ( ( ) ( ) ( ) ( ))

a p

p

W Q v x Q D Q D Q Q

v x N Q Q Q Q

 

   





    

   


    

   

             (113) 

The third transformation concerns the captured photons 
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The last transformation involves the magnetoexciton and photons operators as follows: 

1
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* 1
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       (115) 

Taking into account relation (102) between phases ,  and     and definition (110) of operator 

(0) , one can represent the transformed Hamiltonian with the broken gauge symmetry in the 

form 
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        (116) 

Looking at this expression, one may conclude that, side by side with the u-v-type transformation 

(110) of magnetoexciton superposition-type operator ˆ( )Q


 and acoustical plasmon density 

operator ˆ ( ) /D Q N


, another mixed state of the acoustical plasmonphoton type appeared under 

the influence of the magnetoexcitonpolariton BEC. In addition to them, there are anti-resonant-

type terms in the magnetoexciton-photon interaction, even if they were not included in initial 

Hamiltonian (87). The obtained results permit determining chemical potentials ex  and ph  and 

investigating the energy spectrum of the collective elementary excitations. 
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7. Conclusions 

 

The influence of the RSOC on the properties of the 2D magnetoexcitons was described 

taking into account the results concerning the Landau quantization of the 2D electrons and holes 

with nonparabolic dispersion laws, pseudospin components and chirality terms [18, 19, 22]. The 

main attention was paid to the study of operators ˆ ( )Q


 and ˆ ( )D Q


 that, together with 

magnetoexciton creation and annihilation operators †

||
ˆ ( )ex k


 and 

||
ˆ ( )ex k


, form a set of four two-

particle integral operators. It was shown that the Hamiltonians of the electron-radiation and 

Coulomb electronelectron interactions can be expressed in terms of these four integral two-

particle operators. The unitary transformation breaking the gauge symmetry of the deduced 

Hamiltonian and the BEC of the magnetoexcitonpolaritons were introduced in the frame of the 

KeldyshKozlovKopaev method using the polariton creation and annihilation operators. They 

were expressed in terms of the same magnetoexciton and photon operators using the Hopfield 

coefficients in a simplified form without the anti-resonance terms because the energies of the 

participant quasiparticles are finite situated near the energy of the cavity mode. The unitary 

transformation is factorized as a product of two unitary transformations acting independently in 

two magnetoexciton and photon subsystems. It was realized that the BEC of magnetoexciton 

polaritons supplementary gives rise to the acoustical plasmonphoton interaction and to a new 

type plasmonpolariton formation. The antiresonance terms of the magnetoexcitonphoton 

interaction also appeared even if they were neglected in the starting Hamiltonian. The mixed 

magnetoexcitonacoustical plasmon states in the absence of the RSOC were investigated in 

[3234]. The obtained final transformed Hamiltonian will be used to study the collective 

elementary excitations. 
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