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Abstract

The Bose-Einstein  condensation (BEC) of the two-dimensional (2D)
magnetoexciton—polaritons in microcavity, where the Landau quantization of the electron and
hole states accompanied by the Rashba spin—orbit coupling plays the main role, was
investigated. The Landau quantization levels of the 2D heavy holes with nonparabolic dispersion
law and third-order chirality terms both induced by the external electric field perpendicular to the
semiconductor quantum well and strong magnetic field B give rise to a nonmonotonous
dependence of the magnetoexciton energy levels and the polariton energy branches on B. The
Hamiltonian describing the Coulomb electron—electron and electron—radiation interactions was

expressed in terms of the two-particle integral operators, such as density operators A(Q) and
D(Q) representing the optical and acoustical plasmons and magnetoexciton creation and
annihilation operators ‘PZX(IZ”),‘PEX(IZ”) with in-plane wave vectors IZ” and Q. Polariton creation

and annihilation operators LZX(IZ”), Lex(IZ”) were introduced using the Hopfield coefficients and
neglecting the antiresonant terms because the photon energies exceed the energy of the cavity
mode. The BEC of the magnetoexciton—polariton takes place on the lower polariton branch at
point IZ” =0 with the quantized value of the longitudinal component of the light wave vector, as
in the point of the cavity mode.

The unitary coherent transformation of the obtained Hamiltonian leading to the breaking
of its gauge symmetry was written as a Glauber-type coherent transformation using polariton

operators L}, L, instead of the true Bose operators. It can be represented in a factorized form as a
product of two unitary transformations acting separately on the magnetoexciton and photon

subsystems. The first of them is similar to the Keldysh—Kozlov—Kapaev unitary transformation,
whereas the second one is equivalent to the Bogoliubov canonical displacement transformation. It
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was shown that the first transformation leads not only to the Bogoliubov u-v transformations of
the electron and hole single-particle Fermi operators but also to the similar transformation of the
two-particle integral operators. It becomes possible due to the extensive N-fold degeneracy of the
lowest Landau levels (LLLs) in Landau gauge description, where N is proportional to the layer
surface area S. In both cases, the u-v coefficients depend on the LLL filling factor, but in the last
case, this dependence is doubled. The breaking of the gauge symmetry gives rise to the new
mixed states expressed through the coherent superposition of the algebraic sum of the

magnetoexciton creation and annihilation operators (e‘“‘Pex(—IZ”)+‘PZX(I§|)e"“) and density

operator [3(IZ||) representing the acoustical plasmon. In contrast, density operator A(Q)
representing the optical plasmon does not take part in these superpositions.

1. Introduction

The present article is based on the background previous papers and monographs [1-16] as
well on the recent contribution [17-26].

In [17], the Hamiltonian of the electron-radiation interaction in the second quantization
representation for the case of 2D coplanar electron—hole (e—h) systems in a strong perpendicular
magnetic field was derived. The s-type conduction band electrons with spin projections
s,=1x1/2 along the magnetic field direction and the heavy holes with total momentum

projections j, =£3/2 in the p-type valence band were taken into account. The periodic parts of
their Bloch wave functions are similar to (xziy) expressions with the orbital momentum
projection M, =11 on the same selected direction. The envelope parts of the Bloch wave

functions have the forms of plane waves in the absence of a magnetic field. In its presence, they
completely changed due to the Landau quantization event. In [17-26], the Landau quantization of
the 2D electrons and holes is described in the Landau gauge and is characterized by the
oscillator-type motion in one in-plane direction giving rise to discrete Landau levels enumerated
by the quantum numbers n, and n, and by the free translation motion in another in-plane

direction perpendicular to previous one. The one-dimensional (1D) plane waves describing this
motion are marked by the 1D wave numbers p and g. In [18], the Landau quantization of the 2D
electrons with non-parabolic dispersion law, pseudospin components and chirality terms were
investigated. On this base, in [19], the influence of the Rashba spin—orbit coupling (RSOC) on
the 2D magnetoexcitons was discussed. The spinor-type wave functions of the conduction and
valence electrons in the presence of the RSOC have different numbers of Landau quantization
levels for different spin projections. As was demonstrated in [18, 19, 22], the difference between
these numbers is determined by the order of the chirality terms. Their origin is due to the
influence of the external electric field applied to the layer parallel to the direction of the magnetic
field. In [19], two lowest Landau levels (LLLSs) of the conduction electron and four LLLs for the
holes were used to calculate the matrix elements of the Coulomb interaction between the charged
carriers as well as the matrix elements of the electron-radiation interaction. On these bases, the
ionization potentials of the new magnetoexcitons and the probabilities of the quantum transitions
from the ground state of the crystal to the magnetoexciton states were calculated. In the present
description the number of the hole and magnetoexciton states will be enlarged and the formation
of magnetopolaritons taking into account the RSOC will be described. A simpler version of
magnetopolariton without taking into account the RSOC was described in [21] for the case of
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interband quantum transitions and in [23] for the case of intraband quantum transitions.

The paper is organized as follows. In section 2, the results concerning the Landau
quantization of the 2D heavy holes, as well as of the electrons, in the conduction band taking into
account the Rashba spin—orbit interaction were described. On this base, the Hamiltonians
describing the electron-radiation interaction and of the Coulomb electron—electron interaction in
the presence of the Rashba spin—orbit coupling were deduced in sections 3 and 4, respectively.
Section 5 is focused on the description of the magnetoexcitons in the model of a Bose gas. In
section 6, the breaking of the gauge symmetry of the obtained Hamiltonians is introduced and the
mixed photon—magnetoexciton—acoustical plasmon states are discussed. Section 7 offers
conclusions.

First of all, we will describe the Landau quantization of the 2D heavy holes following
[19, 22].

2. Landau quantization of the 2D heavy holes

The full Landau-Rashba Hamiltonian for 2D heavy holes was discussed in [19] following
formulas (13)—(20). It can be expressed through the Bose-type creation and annihilation operators

o),

harmonic oscillator. The Hamiltonian has the form [22]

n 2 3
A, —ha, i|[a'a+ L |+ o[ atas 2| |T+ip2yz] 0 @)
2 2 -a® 0

a’, a acting on the Fock quantum states | >— where |O> is the vacuum state of the

} 1)

IA_l 0
o1
with the denotations
lelH ._|5,E|n* B.E, he
= 16: —_— — D —— 2
“ mec I*ha, = 3ha) le|H @)

Parameter &, is not well known; therefore, different versions mentioned below were considered.

The exact solutions of the Pauli-type Hamiltonian are described by formulas (21)—(31) of [19]. In
more detail, they were described in [22] and have the spinor form

f f ) 0 0 o)
HoB| M =S [n), £, =3 Y, Dk, P+, P=1. &)
f2 f2 n=0 n=0 n=0 n=0
The first three solutions depend only on one quantum number m with values 0, 1, 2 as follows

[6]:

A

H,

1 0 0
E,(m=0) =7, (E+Zj;|\l’(m=o)>:‘| 0>‘

3 95 IR
E,(m=1) =7 [2 j|\y( =1)= ‘0‘ (4)
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oy ho [ 2429 pm =2y 12
Eh(m_2)_ha>ch(2+ Z j,|‘1’(m_2)>_‘0 .

All other solutions with m>3 depend on two quantum numbers (m—-5/2) and (m+1/2) and
have the general expression

8ﬁ(m—g;m+%)= E,(Mm-5/2;m+1/2)

:(m-1)+§[(2m+1)2+(2m—5)2]i

hay,,
3 s ) (5)
i((5+§[(2m +1)2 - (2m —5)2]j +8482m(m—-1)(m—2))"2, m>3.
The respective wave functions for m=3 and m=4 are
&[3) ¢,[4)
Yim=3))=| * ‘land|¥i(m=4))=| " /. 6
im=3)=| " g and[¥im=a)=| ¢ ©)
They depend on coefficients ¢ and d, ,, which obey to the equations
cm(m+%+%(2m+l)2—ghj=—iﬂZ\/§\/m(m—l)(m—2)dm_3,
5 5 2 -
dm_s(m—5+z(2m—5) —ghjzlﬁZ\/E\/m(m—l)(m—Z)cm, (7)

|Gy [P +1 s [P=1.
There are two different solutions &, (m) at a given value of m>3 and two different pairs of the
coefficients (c;,d; ,).

The dependences of parameters @, , £, and & on the electric and magnetic fields
strengths may be represented for the GaAs-type quantum wells as follows H=yT;
E, =xkV/ecm; m, =0.25m,; ha,, =0.4y meV; =1.06210"2x,[y; & =10"Cxy with unknown
parameter C, which will be varied in a larger interval of values. We cannot neglect the parameter

C putting it equal to zero because, in this case, as was argued in [19] formula (10), the lower
spinor branch of the heavy hole dispersion law

thZZ
Eh—(k”) _ |- :Bh Ez
2m, 2
has an unlimited decreasing, deeply penetrating inside the semiconductor energy gap at great

values of ‘IZH‘ To avoid this unphysical situation, a positive quartic term |5h EZ|IZ”4 was added in

[

the starting Hamiltonian. The new dependences were compared with the drawings calculated in
Fig. 2 of [19] in the case E, =10kV/cm and C =10. Four LLLs for heavy holes were selected in

[19]. In addition to them, in [22], three other levels were studied as follows:
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17
E.(R)=E, (E’E)'
E.(R,) =E,(m=0);
_,3 9.
E.(R,) =E, (E'E)’
E,(R,) =E,(m=1); 8
_,5 11
E.(R;) =E, (E’?)'
E,(Rs) =E,(m=2);
7
E(R)=E (0.2

2
Their dependences on the magnetic field strength were represented in Figs. 1 and 2 of [22] at

different parameters x and C ; they are reproduced below.

a 1.5 71 b 20

T 7"

En(R)) (meV)
)

En"(m=5/2,m+1/2) (meV);m =3

s

> Nz,

-1.0 =10
0 1 2 3 4 5 0 10 20 30 40 50 60

H (M

Fig. 1. (@ The lower branches of the heavy hole La;géu quantization levels
E,(m-5/2;m+1/2) for m>3 at parameters E, =10kV/cm and C=55; (b) a
general view of all the heavy hole Landau quantization levels with m=0,1,...,10 at the same
parameters E, and C. They are reproduced from Fig. 1 of [22].

The general view of the lower branches E;(m—g,m+%) of the heavy hole Landau

quantization levels with m>3 as a function of magnetic field strength is represented in Fig. 1a
following formula (5). The upper branches exhibit a simpler monotonous behavior and are drawn
together with some curves of the lower branches in Fig. 1b. All the lower branches in their initial
parts have a linear increasing behavior up till they achieve the maximal values succeeded by the
minimal values in the middle parts of their evolutions being transformed in the final quadratic
increasing dependences. The values of the magnetic field strength corresponding to the minima
and to the maxima decrease with increasing number m. These peculiarities can be compared
with the case of Landau quantization of the 2D electron in the biased bilayer graphene described
in [18]. The last-mentioned case is characterized by the initial dispersion law without parabolic
part and by second order chirality terms. They both lead to dependences on magnetic field
strength for the lower dispersion branches with sharp initial decreasing parts and minimal values
succeeded by the quadratic increasing behavior. The differences between the initial dispersion
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laws and chirality terms in two cases of bilayer graphene and of heavy holes lead to different
intersections and degeneracies of the Landau levels.

The spinor-type envelope wave functions of the heavy holes in the coordinate
representation look as follows [22]:

igx |2
|l//h(gmrq;x, y)>: \7L_ gom(y(_)'_q )

m=0,1,2.

_ ©)
e | Crpn(y+al)

‘l//h (& @ %, y)> B \/: A sPns(y+01%)

m=>3
The valence electrons in comparison with the holes are characterized by the opposite signs of the
spin projections, wave vector, and charge. The respective envelope wave functions can be
obtained from the previous ones by the procedure

v (&, 6%, Y)) =6, |w, (6,-0: %, ) (10)
where &, is the Pauli matrix. In coordinate representation, they are as follows:
eiqx 0

v, (&, 0 %, y)>=\/|_—

~pn(y-al®)
m=0,12. | 2 (11)
. ¥ |d spn(y—al°)
Vo (em A X, Y)) = T

) JL | = (y—al?)

m=>3

To obtain the full valence electron Bloch wave functions, expressions (11) must be multiplied by
the periodic parts. In the p-type valence band, they have the form

%(U (x,y)xiU
M, =+1, respectively. The hole orbital projections M, =—M, have opposite signs in
comparison with the valence electron. The full Bloch wave functions of the valence electrons are
now characterized by a supplementary quantum number M, side by side with the previous ones

(x,y)) and are characterized by the orbital momentum projections

v,p.X,q v,p.y.q

&, &, and qas follows:
v, (M, &,,0; x y)>—i(u (F)+iu (f))eii °
\ vICmr M Ny \/E V,p,X,q - v,p,y.q \/L_X _Q;(y_q|2)1
m=0,12;M,6 =41,
igx = 2 (12)
1 e doysPns(y—al?)

v, (M, &2, 0 %, y)>=ﬁ(uv,p,x,q(F)iiUv,p,y,q(F))\/: ot (y—ql?)

m>3,M, =+1.
From this multitude of valence electron wave functions, the more important of them are
characterized by the values of ¢, with m=3 and 4 as well as by ¢, with m=0,1. These four
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lowest hole energy levels being combined with two projections M, £1 form a set of eight lowest

hole states, which will be taken into account below.

Now, for completeness, we will remember the main results obtained by Rashba [1] in the
case of the electron conduction band. They are required to obtain a full description of the 2D e—h
pair and of a 2D magnetoexciton under the condition of the Landau quantization under the
influence of the RSOC.

The LLL of the conduction electron in the presence of the RSOC was obtained in [1]:

, e™e 12,0 (Ve ).
‘\Pe(Rllste’ye»:\/L— blgoj(ye) ]
R e R L LYt (13)
1 2 2 2
|2, = b =2 1%

2 2"
1+ 2 2 1+,/1+2a2
1 /1 2 2 \4
—+,]-+2a
2 \4
The next electron level higher situated on the energy scale is characterized by the pure spin
oriented state

- A I
“Pe(Rz’p’Xe’ye»‘\/g%(ye)’gerez—2- (14)

Two LLLs for conduction electron are characterized by the values of m, =0.067m,,
heo,, =1.49 meV-y and parameter o =810°x/ ﬁ . They are denoted as

E.(R)=ha, [1— /3+ 2a2J,
) (15)

E.(R,)=rhao, i

2
The lowest Landau energy level for electron E (R,) has a nonmonotonous anomalous
dependence on magnetic field strength near the point H=0T. It is due to the singular
dependence of the RSOC parameter «”=6.410"x"/y, which, in the total energy level
expression, is compensated for by factor 7w, of the cyclotron energy, where ha,, =1.49y meV.
As earlier, parameters x and y are related with electric field E, = x kV/cm and magnetic field

H =y T. The second electron Landau energy level has a simple linear dependence on H .

The full Bloch wave functions for conduction electrons including their s-type periodic
parts look as follows:

| o gy P
, R, Py X, :chp a1
el Ry pix,y))=Ue, (r)JL_X b, (y - pI%) (16)
eipx 0
Ro PiXY))=U o (F )
e R X ) =Vess ) =y i
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Two lowest Rashba-type states for conduction electron will be combined with eight LLLs for
heavy holes and with the corresponding states of the valence electrons. The e—h pair will be
characterized by 16 states. Heaving the full set of the electron Bloch wave functions in
conduction and in the valence bands one can construct the Hamiltonian describing in second
quantization representation the Coulomb electron-electron interaction as well as the electron-
radiation interaction. These tow tasks will be described in the next sections of our review paper.
The results obtained earlier in [19, 22] taking into account only 8 e—h states will be supplemented
below.

3. Electron-radiation interaction in the presence of the Rashba spin-orbit coupling

In [17, 21] the Hamiltonian of the electron-radiation interaction in the second quantization
representation for the case of two-dimensional (2D) coplanar e—h system in a strong
perpendicular magnetic field was discussed. The s-type conduction-band electrons with spin
projections s, =+1/2 along the magnetic field direction and the heavy holes with the total
momentum projections j, =+3/2 in the p-type valence band were taken into account. Their
orbital Bloch wave functions are similar to (x+iy) expressions with the orbital momentum

projections M ==+1 on the same selected direction. The Landau quantization of the 2D electrons
and holes was described in the Landau gauge with oscillator type motion in one in-plane
direction characterized by the quantum numbers n, and n, and with the free translational motion
described by the uni-dimensional(1D) wave numbers p and q in another in-plane direction
perpendicular to the previous one. The electron and hole creation and annihilation operators
a nps &0 p.and by by . were introduced correspondingly. The Zeeman effect and the
Rashba spin—orbit coupling in [17, 21] were not taken into account.

The electrons and holes have a free orbital motion on the surface of the layer with the area
S and are completely confined in &, direction. The degeneracy of their Landau levels equals

N =S/(2712), where I, is the magnetic length. In contrast, the photons were supposed to move

in any direction in the three-dimensional (3D) space with the wave vector k arbitrary oriented as
regards the 2D layer as it is represented in the Fig.2 reproduced from [17]. There are three unit
vectors &, d,, &,, the first two being in-plane oriented, whereas the third &, is perpendicular to

the layer. We will use the 3D and 2D wave vectors kK and IZ” and will introduce circular
polarization vectors &,, for the valence electrons, heavy holes, and magnetoexcitons as follows:

o g

Q”:)gM Q‘>

Fig. 2. Reciprocal orientations of circularly polarized vectors 6. and &,, reproduced from [17].
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1 - s
410w :ﬁ(alilaz),M =1, (17)
The photons are characterized by two linear vectors €, ; or by two circular polarization vectors
o, Obeying the transversality conditions:

6! = (6, i, )i 6 k) =0 =12 (18)

The photon creation and annihilation operators can be introduced in two different polarizations as
follows:

k.t %(CE; + iCR,z);(CR,i)T =%(Cg,1$ iClZT,2>;

Zek i 7K, j _C Gl; +CE,+5IZ_; (19)

Zek j k i ( )T 612_ +(CIZ,+ )T Oil;

The reciprocal orientations of circular polarizations o and &,, will determine the values

-t %

of scalar products (c,-5y,). The electron-radiation interaction describing only the band-to-band

quantum transitions with the participation of the e—h pairs in the presence of a strong
perpendicular magnetic field was obtained in [17] and can be used as initial expression for
obtaining the interaction of 2D magnetoexcitons with the electromagnetic field.

These results will be generalized below taking into account the Rashba spin—orbit
coupling, which means the use of the spinor-type wave functions (12) and (16) instead of the
scalar ones [17, 21]. The Hamiltonian looks as

o =[], 3 vy X, T T A G 5l

mo k(ky.k;) i=12 M, =tle=¢, &, 0.0
o[P(c,R,,g v,M,,¢&,0; k) cr .0 M, gq+P(v M, &,0;C, R, 0; k)avM ca@er o]t (20)
H(C, ) o, +(C; )T G, le [P(c,R,g;v,M, &,0;—k) x

><a‘(:,Ri,ga‘v,Mv,g,q + P(V' Mv’g' g:c, Ri J g;_k)a\j,Mv,s,qac,Ri,g]}
The matrix elements will be discussed below. One of them has the form

N . g*m,q(r)>:

odn * Z\a-ioX ¥ iKF r= & = A =\ g 2\ qigx *
ao - J-dZFUCvS’g (r)e ’ (Do(y_glz)ek (alpx +a2 py)(UV,p,x,q(r)ilUv,p,y,q(r‘))eq ¢m—3(y_ p|2)_ (21)

JaL,

? JA UL o ()0l (v = 01 (BB, +8,8,)U, (M) £1U, ;o (M) (y = pI¥)

PR, GV,M, & 0, iK) = [dF (i, (F

One can represent the 2D coordinate vector ¥ asa sum F =R+ 5 of lattice point vector R and
small vector p changing inside the unit lattice cell with lattice constant a, and volume v, =a;.
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Any 2D semiconductor layer has at least minimal width a;, and periodic parts U () are
determined inside the elementary lattice cell. Periodic parts U, () do not depend on R because
U, (R+p)=U_(p). On the other hand, envelope functions ¢, (F) describing the Landau
quantization have a spread of the order of magnetic length 1, which is much greater than a,
(I, >>a,). It means that they hardly depend on 5, i.e., ¢ (R+5)= ¢ (R). The matrix elements
(21) contains some functions that do not depend on R and other ones that do not depend on 5 .
ikr

— e"®*k5 contains both of them. Derivative ;% acts in the same manner
§

on functions U, (p) and ¢n(§) because R and p are the components of . These properties

Only the plane wave e

suggested transforming the 2D integral on variable r
and p as follows:

Ja*TARB(p) = 3 AR d*5B(p) = 3. A(R)a; Vi [a*5B(p)=] sz;A(F;)% j d5B(5)  (22)

in two separate integrals on variables R

Here the small value of a? is substituted by the infinitesimal differential value d’R because
A(R) is a smooth function on R. The integrals on te volume v, of the elementary lattice cell

contain the quickly oscillating periodic parts U (p) and U, . .(p) belonging to s-type

conduction band and to p-type valence band. They have different parities and obey to selection
rules

1 * . i - -
ARG (B, 510(5) =0, i, =Xy

0 v, (23)

Ll e -2, | (3)=0, ifi]

R0 S Uy (P) =0, i ]
0 vy i

The case i = ] is different from zero and gives rise to the expression

1 x gyl 0 - ~

=[dp,, (p)e"" PN CRLACH) (24)
0 v, i

The last integral in the zeroth approximation is of the allowed type in the definition of Elliott [26,

27] and can be considered as a constant P, (k;,g) =P, (0) which does not depend on wave

vectors IZ” and g. Due to these selection rules, derivatives 0/0r in expression (21) must be
taken only from the periodic parts U, ,; ,(p) because all other integrals vanish.

The integration on variable R, engages only the plane wave functions and gives rise to the
selection rule for the 1D wave numbers g,q,k, as follows:

1 R (a-9+k) _ 27 _
L—XI ehrt = o9 +k)=0,(9.0-k) (25)

The integral on variable R, engages only Landau quantization functions ¢, (R,) and gives rise to

the third selection rule concerning numbers n, and n, of the Landau levels for electrons and
holes. It looks as
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kXYZ

I 0R ¢ (R, ~012)g, (R, —(9 —k 1D =% 2 "g(n,,n 1K) (26)

where

kI2 i
p(n..ny;k) = J dyg,, (v == ), (v + “’)e

ky

e 27 g(nny;k) =N, 0, k).
Here, we took into account that Landau quantization functions ¢, (y) are real.

This selection rule coincides with formula (30) in the absence of the RSOC, and its
interpretation remains the same. Once again one can underlain that, during the dipole-active
band-to-band quantum transition, the numbers of the Landau levels in the initial starting band, as
well as in the final arriving band, coincide, i.e., n,=n, . Itisequally true both in the absence and
in the presence of the RSOC.

Three separate integrations on p, R, and R, taking into account selection rules (23), (25),

and (26) lead to the expression
IS(C Rl g:V, Mv,gr;,q, ||) 5kr (q! g _kx)6M\, Pcv (O)eikyglg X

kxky 2

xe [aodm 3¢(O m-3; k||) blc ¢(1 m; k||)] (27)
m=>3
Here, the vectors of circular polarizations &,, describing the valence electron states were
introduced following formula (17). One can introduce also the vectors of the heavy hole circular
polarizations &, in the form

(28)

- 1 .
Om, =O0wm :ﬁ(aiilaZL M, =71
The magnetoexciton states are characterized by quantum numbers M,, R,, ¢ and by wave

vectors IZ” :
The general expressions for the matrix elements are as follows:

kaky
o

P ROV, M, £,0:K) =5, (0.9—K )Gy P, (0" “ TR, s:K)e 2 (29)
=12, M, =11, ¢=¢,, withm=0,1,2, and e =¢,, withm>3
Coefficients T(cR;, ¢; IZ”) have the forms
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T(Ry, 6n:K) = [0, o#(0,m—3;k)) ~bic, g (L, m; k)],

m>3,
T (R, £ k) =[-brg @ m; k)],
=0,1,2
m=otx (30)
T(R,, &,:k) =[-c, #(0,m; k)],
m >3,
T(Ry,&,:K) = [-4(0,m; k)],
m=0,1,2
The other matrix elements can be calculated in a similar way. They are
P(v,M,,&q,c,R,9;-k) =P (c,R, gV, M, &gk ) =
- 5, (0,0 k)55, PO e T (R 6K,
(31)

kky B
P(C.R, GV, M, &,0;K) = 8, (d, 9 +k,)5, P, (0)e “Fe " 2 *T(R, &-K),

K,k
~ — - kg2 =2 —
P, M, &,0;¢, R, 9;K) =8, (0,9 +k,)Gy, P (0™ e 2 "T" (R, &k
They permit calculating the electron operator parts in Hamiltonian (20) and expressing them in
terms of the magnetoexciton creation and annihilation operators determined as follows:

k,M,,R, e“Ual b 32
l//ex( I h o g) \/_Z R; ?th Mh a%—t ( )
Here, he electron and hole creation and annihilation operator were introduced
A g =R g
Rl,g C’Rllg (33)

a'\/,Mv,g,q = bj—Mh,g,—q
Here, we have supposed that the Coulomb electron—hole interaction leading to the formation of

the magnetoexciton is greater than the magnetoexciton—photon interaction leading to the
formation of the magnetopolariton. It means that the ionization potential of the magnetoexciton

| P, () "'\t was determined in [21].
blo L, o,

The existence of the phase factors of the type ™% jn expressions (29) and (31) similar with
that appearing in the definitions of the magnetoexciton creation operators permits obtaining the
expressions

|, is greater than the Rabi energy 7wy, |~ |
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Z 5(C, n9v,M,€,0; k”)acR oM, 50 =

q.9

:6-:/Ih F)CV(O)T(RU‘C";@)\/WV}!)((R]\!Mh,Ri;S);
2 IE5(\/’'\/IV"C"’q;(“" Ri’g;_@l)aJ,Mv,g,qac,Ri,g =

Gy P OT (R, &k )VN, (K, M, R, £),

" (34)
P(C, Ri 3,5V, ny8yq;_k||)ac,Ri,ga'v,Mv,6,q =

M

q.9

[QM Qi
z

F)C"(O)T(Ri"C"._EII)\/NAT —R”,Mh,Ri,g),
5(V,|\/|v,g,q ¢.R.g; kl\)avM eqeRr.g =

= G, P"u O)T (R, &1 —K)VNy, (K, M., R, &),
In [21], the Hamiltonian of the electron-radiation interaction was deduced in the absence of the

RSOC. In its presence, the mentioned Hamiltonian also can be expressed in a compact form in
terms of the photon and magnetoexciton creation and annihilation operators. As earlier, we

introduced the values N =S/271Z, V =SL,, where L, is the size of the 3D space in direction
perpendicular to the layer. In the case of microcavity L, equals cavity length L. The electron-
radiation interaction has the form

| T ER T

Kk k,) My=1i=12 z=z, & L, CU‘

X{P.OT (R.k)[c; (5761, )+C; (6760, )]‘P (KM R, 8) +

+P,(OT (R )l(c; ) (6.6, )+ (ch)' (5:-5,, )]‘P LK MR8+ (35)
+R, (0T (R, &,k )[(c; )(5-5;h)+( k+) &+5;Ah)]\P (KM R,2)+

+P, (OT" (R.2,~k )[c,_(6:64,)+C (5 aMh)]‘P (-k,M,,R,&)}

This expression is similar to the Hamiltonian in the absence of the RSOC. Now the Coulomb
interaction between charged carriers in the presence of the RSOC will be investigated.

4. The Coulomb interaction in the 2D electron-hole system under the influence of the
Rashba spin-orbit coupling

The Coulomb interaction in the 2D e-h system taking into account the Rashba spin—orbit
coupling was discussed in [19, 22]. Below, we will remind these results including all valence
electron states (12). In the present description, the multicomponent electron field contains a larger
variety of the valence band states than in [19, 22]. For the very beginning, the properties of the

density operator of electron field p(F) and of its Fourier components 5(Q) will be discussed. To
this end, the Fermi-type creation and annihilation operators of the electron on different states
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were introduced. They are denoted as a , for the conduction band Rashba-type states (16)

R.gr &
lw.(R,g;r)), as a, . ..a, . , forthe splnor valence band states (12) |y, (M,,&,,9;r)) and as

aT a.
v’ mvg MV!‘gm
functions have a form of a column with two components corresponding to two spin projections

on the direction of the magnetic field. The conjugate functions (w,(R,g;r)|, (w.(R,g;r)| and

for other spinor valence band states (12)

w,(M,, &, 0; r)> These spinor-type

<1//V(Mv,g,;, g; r)‘ have a form of a row with two components conjugate to the components of the

columns. With the aid of the electron creation and annihilation operators and the spinor-type
wave functions, creation and annihilation operators W' (r) and W(r) of the multi-component
electron field can be written as
W(r) = ZlJZZ v.(R. ;1) Rg+ZZZ v (M, e, gi0)ay, , o+
i g M, & 9
PRI AU 1)a, .
My &, 9 (36)

\PT(r)zzz <l//c(Ri’g;r)|a +ZZZ <l//v(Mv’gm’g r)|a‘M Em g+

i=12 g My &n 9

+ZZZ (vu(M, &,

The density operator of electron field p(F) and its Fourier components 5(Q) are determined by
the expressions

Msg

p(F) =P (N (r),

37
pQ) = [d?rp(re e
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The density operator looks as

A= 3 al 3o (v R AN v (R, gir))+

i,j=1,2 9,9

LD ID I

My M/ &n.ém 9.0

LD DI - W (A (N H)

M Mvgmgm 9.9

o (v
<

F2 2D A B e (VMG aiD)
(v

J(ML e, a0 |, (M, &, 051)) +

v,(M,,&,,0:r))+

My My g 6m 9.0

t 2 202 A B

My M g ien 9.0

WM, &5,05T)

)
)
(M, &, 9:7)) +
vy, 6,,G1)) +

+;MZZ§ at Ay . o (W (RN 1, (M, 6,,0;1)+
+;2M262mz al 3, . (W R N w, (M, 6,0:1))+
+ZZZZ i a@rig Wy (M €0, ) [ (R, G5 1)) +
+ZZZZ o Rg<wv(Mv,em,q IAGHHS) (38)

Fourier components p(Q) of the density operator determine the Coulomb interaction between

the electrons. They will be calculated below taking into account spinor-type wave functions (12)
and (16). For example, the first term in expressions (38) looks as

Pec(R;R;Q) = Zaqu R AGCHHIAGH-H)E

! (9+Qx-a)x

= 3l g o[ APTUL (U, () S 39)
q.9

e[ 25 (y — ) (v = 913) + [ 0 (y —ald ey (y - 93],

r=R+p
Following formula (22), it is necessary to separate the integration of the quickly varying periodic
parts on volume v, of the elementary lattice cell and the integration of the slowly varying

envelope parts on lattice point vectors R as follows:
—jdpucw(p)ucsg(p)e'Qv”v =1+0(Q),

O Vo

L_J'ei(g—q+Qx)R><dRX = 5kr (q, g +Qx)’ (40)

é(n,m;@):IdRy(p:(Ry—%](p [R +Q J Y =4 (mn; -Q)

Here O(Q) is an infinitesimal value much smaller than unity, tending to zero in the limit
Q — 0. It will be neglected in all calculations below. The calculation gives rise to the final form
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poo(RiR;Q) =[ay|" #(0,0;Q) + [0, AL A)A(R; R; Q) = S(R; R; Q) A(Ry; R;; Q),
A(R;R;Q) = Z e'Qy"°a’ LS (41)
S(R;R;Q) =[ay| #(0,0;Q) +]o,| $LL Q)]

Expression (41) looks as a product of one numeral factor S~(R1;R1;C§), which concerns the
concrete electron spinor state and another operator type factor of the general form

PEmQ =2 el ga o =p'(1.6-Q) (42)

%
It will be met in all expressions listed below, bzut with different meanings of ¢ and 7, as follows:
Pec(Ryi R, Q) =S(R,iR,;Q) AR, R, Q),
S(R;;R,;Q) =4(0,0,Q),
Poo(RiR;Q) = S(R; R,;Q)A(R;: R, Q),

. B, (43)
S(R;;R,;Q) =b¢(1,0;Q),
Peo(RyiR;:Q) = S(R,i R;Q) A(Ry; R;; Q) = ol (R R,;—Q),
S(R;;R;Q)=b¢(0,1,Q)
One of the valence electron density fluctuation operator looks as
pv V(Mv'gm’ legm ’Q) Z aM 1Emod MV - gJ‘dzﬁ IQr <WV(MV’8I‘;’q;F) l//v(M\;’gn;”g;F)>:
:S(Mv,gm;Mv,gm,;Q)p(Mv,gm;Mv,gr;,Q), (44)
S(M,, 60 My, 67:Q) = 8y, [d7,30,f(M=3,m'=3,Q) +c.crp(m,m'; Q)],
m,m’' >3
Here, we have taken into account the following property of the valence band periodic parts
- d:ajv i,g+ (p)Uv (p)elepy 5 +O(Q)
o\',[ P.i,g+Qy p.j.g (45)

Lj=XY
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They lead to Kronecker symbol &y, . in expression (50) and in the next ones concerning the
valence band as follows:

lbv—v(Mw‘c"m; M\;vgm';é) = S~(le8m; M\;’gm’;é)ﬁ(Mv’gm; Mv’gm’;d)’
§(Mv’gm; M\;’gm’;d) = 5MV,M‘;¢Z(m1 m’;(j)!

m,m'=0,1,2,

Py M, Ei M, £7:Q) = S(M, £, M, 67:Q) S(M,,, £, M., 7:Q),

S(M;, 6,3 M,,6,:Q) =8, .Cr (M, M; Q), (46)
m'=0,1,2, m>3,

bv—v(Mv’g;; M\;,Em,;(j) = S~(Mv,€r;; M\;’gm’;é)b(Mv’gn;; Mv’gm’;é)’
S‘(va’gn;; M\;’gm’;é) = é‘Mv,M\;Cr;&(ml m,;d)!
m>3, m=0,12

As usual, they obey to the equalities

AlL&EmQ) = p,.,(1:6-Q),
p&mQ)=p"(1:6-Q),
#(n;m; Q) = ¢"(m;n;-Q),
S(&mQ)=S"(m:&-Q)
Up till now, we have dealt with intraband density operators ﬁcfc(.f;n;(j) and ,ava(f;n;(j).

(47)

Interband density operators ﬁcfv(é;n;(j) and [)\,70(5;77;6) depend on the interband exchange
1
J2

value. They contain the quickly oscillating periodic parts with different parities and the
orthogonality integral on the elementary lattice cell has an infinitesimal value

Vif dpU;s 6.0, (P)E™” %(U (P) iU, ,,,(p) =0@Q) (48)

0 vy

electron densities of the type U:,s,g+ox (P)—=WU, ., (0£iU, () and its complex conjugate

This integral is different from zero if one takes into account, for example, term iQ, p, appearing

iQypy

in the series expansion of function ™" . It gives rise to interband dipole momentum EICV with

the component

e *
Aoy =— [dpU., (PP, 5,4 (P),
VO Vo (49)

0(Q) =~ Q,d,,,
The Coulomb interaction depending on interband exchange electron densities o, Q) Puc (—Q) has

a form of the dipole—dipole interaction instead of the charge—charge interaction, which takes
place only in the intraband cases. It is known as a long-range Coulomb interaction and gives rise
to the longitudinal-transverse splitting of the three-fold degenerate levels of the dipole-active
excitons in the cubic crystals [28, 29]. These effects with the participation of the 2D
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magnetoexcitons have not been investigated up till now, to the best of our knowledge, and remain
outside the present review article.

Density operator 5(Q) in the frame of electron spinor states (12) and (16) looks as

PQ) = Z PcRiRGQ)+ D D p(My, 6, M, 6,,Q) +

M, My & &
+ Z PuyMy M e Q)+ D D p (M 6 M,, ,:Q) +
My My e My M e e
+2, > pvv(Mv,em,Mv,em,QHZZZ Pe(RiM,, 6,:Q) + (50)

M, .M

vém Eny v

+Zzz /Oc V(R|’Mv’gm’Q)+zzz pv c(Mv!gm! |!Q)+

v5m v

222 My iRiQ)

v5m

The first five terms of this expression depend on the intraband electron densities and determine
the charge—charge Coulomb interaction. The last four terms depend on the interband electron
densities and lead to the dipole—dipole long-range Coulomb interaction.

The strength of the Coulomb interaction is determined by coefficients a_,b d, of the spinor-

type wave function (12) and (16) as well as by the normalization and orthogonallty-type integrals
#(n,m, Q). They have the properties:
QZIZ

#(n,m,Q) = eiTAw,m(Q) (51)
An0) =6,
Diagonal coefficients Axn(@) with n=0,1,3 will be calculated below. The nondiagonal
coefficients with n=m in the limit Q — 0 are proportional to vector components Q, in a degree
of |[n—m|. They can be neglected in the zeroth order approximation together with other
corrections denoted as O(Q). It essentially diminishes the number of the actual components of
density operator (Q).
In the zeroth order approximation, neglecting the corrections of the order O(Q), we will
deal only with diagonal terms that permit the simplified denotations

p(£:EQ) = p(E£Q),
3 o s (52)
S(£&Q)=5(&Q)=e * S(£Q)
The concrete values of coefficients S(&;Q) are
S(R:Q)=llay ' A, (Q+Ib [ ALQ)]
S(R,;Q) = A, (Q),

S(£, Q) =A,,(Q.m=012, (53)
S(6m; Q) =[d, s A sns@+1c, P AL QL
m>3
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The calculated values of An,m(Q) equal

Ao@) =1 A,@Q) =(1—Q ly j

? (54)
= 3 212 § 414 _i 616
As,s(Q)—l_EQ Io +8Q Io 48Q I0
The diagonal part of density operator 5(Q) looks as
. 9% - _ _ _
pQ)=e * {3 S(R;QHA(R:Q)+D.D S(M,,5,;Q)p(M,,&,;Q) +
i M, & (55)

Y S(M,,,£,,9)H(M,, £,: )}

M

It contains two separate contributions from the conduction and valence bands. The latter
contribution in turn can be represented as due to the electrons of the full filled valence band
extracting the contribution of the holes created in its frame. To show it, one can introduce the
hole creation and annihilation operators as follows:

bl:rllh,c,q =&, _m,.e-q
th,g,q = aJ,—Mv,g,—q' (56)
e=¢,,m=0,12,
E=€&,M23
This leads to the relation
,bv(_Mv’gv(j) = Né‘kr((jio) _ﬁh(Mh’g’Q):

S (57)
271'|02
where hole density operator p, (M,, &, Q) looks as
M, Q=3 e b (58)
t h,g,H? Mh,g,t77

The constant part Nﬁkr(Q,O)in (57) created by electron of the full filled valence band is
compensated by the influence of the positive electric charges of the background nuclei. In the
jelly model of the system, their presence is taken into account excluding the point Q =0 from the

Hamiltonian of the Coulomb interaction [29]. Taking into account the fully neutral system of the
bare electrons and the positive jelly background, we will operate only with the conduction band
electrons and with the holes in the valence band. In this electron—hole description, density

operator p(Q) becomes equal to
AQ=5.Q-5Q) 9)
Q=0

where
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£(Q)= D S(6, QP My, 6,;Q)+ D S(67:Q)0,(M,,£,;Q) =

Q5 - - ~ -
=e 4 {z S(&,;Q)p, (M, ¢,,,Q) + zﬁ S(&,: Q)0 (M, ,,Q)}, (60)
_ . . 9% . _
ﬁe(Q):ﬁc(Q):Z S(Ri;Q)lbe(Ri;Q):e ‘ Z S(Ri;Q)lbe(Ri;Q)

The Hamiltonian of the Coulomb interaction of the initial bare electrons can be expressed in
terms of the electron field and density operators (36) and (50) as follows:

Heou =% [difd2¥' @'V (@-2¥(2% Q) =

% V@[ dI[dE I W@ -
Q

. ) - o (61)
== 2, V(Q) [dre® ¥ (F)p(-Q) ¥ (7),
Q
= 27e?
V(Q)= =
@ £,5|Q]

V(Q) is the Fourier transform of the Coulomb interaction of the electrons situated on the surface
of the 2D layer with area S and dielectric constant &, of the medium. The expression

¥(F)p(—Q)W(F) contains density operator 5(—Q) intercalated between field operators W' (F)

and W(F) . Operator W(F) cannot be transposed over operator A(—Q) because they do not
commute, but its nonoperator part expressed through the spinor-type wave function can be
transposed forming together with the conjugate wave function of field operator ¥ (F) a scalar.
After the integration on coordinate r, the quadratic intercalated density operators will appear in
the form
K@mxn Q=3 e¥al o pxy-Qa g =
t ) "2

iQ,ti2 —iQ,sl? +
=22 e"e™%al (a' ja ga o= (62)
t S

t+=E X 5%y s+=X p =X
sty 2 VT T

= p(&mQ) A% y;—Q) =6, A(&: ¥;0)
The same relations remain in the electron—hole description.
The commutation relations between the density operators are the following:
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p&mQ) = Z ea! LY

t+ =%
T

p(X Y P) z elPt|o o a .

Xt— =
2V

i[PxQ1, 12 o -iP<QLK
[A(&m:Q), p(X ;P =6,,A(& yiP+Qe 2 =65, p(xmP+Qe 2 = (63)

[[P Ql.l j[ A&y PrQ)=6, pxm PO+

+isin£[P QL }[ PEYP+0)+ 8, pxi P+ Q)]

Q%

Factor e “ arising from the product of the density operators 5(Q) and A(—Q) being multiplied

by coefficient V (Q) gives rise to coefficient W (Q) describing the effective Coulomb interaction
under the conditions of the Landau quantization
Q%
W(Q)=V(Q)e ? (64)
Excluding the intercalations, the Hamiltonian of the Coulomb interaction in the presence of the
Landau quantization and Rashba spin—orbit coupling has the form:

Heor =5 ZW(Q){Z S(R;Q)S(R;; QAR QA(R;-Q) -3, A(R;; 0)] +

+ 2 2 S(M,,£,,Q)8(M), £, ~Q)AM,, £, Q) Ay, £, -Q) = 8y 1 S (M, £, 0)]+

,
My M & e

+ > Y S(M,,£,:Q)S(M], £, -Q)[AM,, £,:Q) P(M,, 75 =Q) = Sy s S P(M,, 673 0)] +

A
M, My EmrEmr

+2° > S(RiQ)S(M,,£,;-Q)A(R;Q)p(M,, £,;-Q) +

+ZZ S(R;Q)S(M,,£,;-Q)A(R;Q)A(M,, £,;-Q) +

+ZZ S$(M,,£,;Q)S(R;=Q)A(M,, £,:Q) A(R;; ~Q) +

+ZZ S(M,,£,:Q)S(R:=Q)A(M,, &, Q)A(R; Q) +

+Z Z S(M,,£,;:Q)S (M}, &,;-Q)A(M,, £, Q) A(M, 6,5 -Q) +

+ Z Z S(M,,£,;Q)S (M, £,;-Q)A(M,, &, Q) A(M, £, -Q)} (65)

, “
My M e e

The Hamiltonian of the Coulomb interaction in the electron—hole representation looks as
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Heou = ZW(Q){Z S(R;Q)S(R;;~Q)[2.(R;Q)4.(R;;-Q) =6, ;. (R;;0)] +

+ Z Z S(Mh7gm1Q)S(Mh’gm”_Q)[ph(Mh’ m'Q)ph(Mh’ Ens Q)_5Mh,M,;5m,m'/5h(th‘9m;0)]+

My M} e

+ Z Z S(thng)S(Mw Em Q)[[’h(Mh’ m’Q)ph(Mh’ Em Q)_5Mh,M,;5m,m'/6h(th‘9;;0)]+

Mh,Mﬁ g;‘,gm,

+Z Z S(Mh18m1Q)S(Mh!8m’ Q)ph(th‘gmiQ)ph(Mh’ m’ (j)+

Mh’Ml"l EmrEm

+Z Z S(Mh’gn;;(j)S(Mr:’gm’;_Q)Ibh(Mh’gr;;(j)ﬁh(lvlr:'gm’;_(j)_

My, My EmrEny

_z z S(Ri;Q)S(Mh"9m;_Q),be(Ri;Q),bh(Mh'gm;_Q)_

i My,en

> 2 S(R:Q)S(M,,6,:-Q)A.(R;Q) 5, (M, £, -Q) -

=20 2, My, Q)8(R;-Q)4, (M, £,: Q). (R -Q)
-2 2. S(My, Q)8 (Ri-Q)A, (M, £, Q). (Ri-Q)} (66)

In the concrete variant named as F,, where the electrons are in state R,, whereas the holes are in
state ¢, with a given value of M, , Hamiltonian (66) looks as

Heou (R €5) Z%Z W(Q{(I3 [ +1b [ A Q)’[2.(R: Q) 4. (R; ~Q) — 4. (R; 0)] +
Q

+(|dg § +]cg § A3,3(Q))2[/A)h(Mh’g?:;é)/sh(Mh’g:;;_Q)_/A)h(Mh’g:;;O)]_ (67)

212y +1b A @Q)(dg [P +1c5 F ALQ)A (R Q)2 (M, 253-Q)}
In the absence of the RSOC, we have a,=d, =1 and b, =c; =0. In the variant F, =(R,,¢;)
described by Hamiltonian (67), the 2D magnetoexciton can be described by the wave function

V(R K)) = Z el Bl ) (68)

—X 4t M 3 X —t
"2
where |0) is the vacuum state determlned by the equalltles
a.,|0)=b,,|0)=0 (69)
In [22], other seven combinations of the electron and hole states were considered as follows:
Fz = (Rz’g;)’ Fs = (R11€0)’ l:4 = (Rzﬂgo)’ Fs = (R1’g;)’

_ (70)
Fo=(R,&)F=R.,&)K=R,s)
In all these cases, the exciton creation energies were calculated using the formulas
Eex(Fn’ lz) = Ecv(Fn) - Iex(Fm iz)
E.(F)—E, =E.()+E, (), (71)

F. =(mn)
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Here, E, is the semiconductor energy gap in the absence of a magnetic field. IeX(Fn,IZ) is the

ionization potential of the magnetoexciton moving with wave vector K .
The Hamiltonian of the Coulomb electron-electron interaction in the case of e—h pairs
with the electrons in the degenerate state (S,,R;) and the holes in the degenerate state

(S,,M,,¢,) hasthe form
HCouI(Riigniw) =
= %Z {We—e(Rl; (j) [ﬁe(Ri)Q) ﬁe(Rl; _Q) - |\’]e(Rl):| +
o ) . (72)
+Wh_h(Sn;;Q)[ﬁh(Mh,Er;;Q)/sh(Mh,é'r;;—Q)— Nh(Mh,é‘r;)]—
~2W, (R £0; D)4, (R Q) A, (M,, 5,5 -Q)}
Once again, the electron and hole density operators are recalled:

A(R;Q) =Y e%a’ a

Ry t4+=X
)

AMy 2 Q)= e’ b (73)
t

My, ém ,t+7 My, ém ,t—7

N.(R)=74.(R;0), N,(M,,&)=5,(M,,&,;0)

Q!
o
T

Coefficients W,_;(Q) in (72) are
W, (R0 =W (Jauf* 4,(D) + | ALD))
Wy (61D =W Q) [0 A 1@ e 4@ >3
W, (R, £,:Q) =W (Q)[as]* A,0(Q)+ b A (@) )x
(doaf Avan s @] A (@), m=3

The normalization conditions take place
2 2
3" b =1

Y
‘dmfg‘ +

m=>3

(74)

Ars

2

c| =1, (75)
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In the actual case m=3 we obtain
B
W, (R;Q)=W(Q) 1—TQZ|02 :
2

-.A) — S _ﬁ 22_§ 414 i 616
W, @ -w(@)| 1- S (30w 2ot Lot ||

(76)
Ay _ = _M 212 _‘C;r[ 22_§ 414 i 66]
We_h(Rl.é‘s,Q)—W(Q)[l 2Q|0 1 - 3Q°1, 4Q|0+24Q|0 ,
L9k 27
W =e 2V , V = —
Q)=e (Q), V(Q) . S‘ 5

The terms proportional to Ne(Rl) and Nlh(Mh,gr;) in (72) have coefficients 1 ,(R)) and 1,(¢,),

which describe the Coulomb self-actions of the electrons and holes, are listed below together with
the binding energy of the electron and the hole forming the magnetoexciton. The last value is
determined by the diagonal matrix element of Hamiltonian (72) calculated with wave function
(68) as follows:

(o (R K) | Heou | W (FLK)) = =1, (R) + E(F, K),
L(F)=1(R;é&,) :Z We—h(Rl;gr;;Q)i
Q

o\ DY e RN i 2 [lzxd]zlo2
E(Fl,k)—E(Rl,gm,k)—ZZQ: W__, (R;&.;Q)sin [—2 J -
l%in; E(Rl;gr;;iz) =L(R;&,),

LR =5 2 W (RiQ) 14(e) =5 2 Wiy (5:0).
Q Q
s (Riz) = L (R)+1, ()

The binding energy of the magnetoexciton and its ionization potential, which has the opposite
sign as compared with the binding energy, tend to zero when wave vector k tends to infinity and
the magnetoexciton is transformed into a free e—h pair:

Hmex,l :[%4_ Ee(Rl)_ Ie(Ri)_:ueJ I\,\Ie(Rl)'F
0 (78)
+[%+ E,(My,&,)— Ih(gn_w)_ﬂhJNh(Mh’gr;)

Here, semiconductor energy band gap EJ in the absence of the Landau quantization was
introduced.
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Now, instead of electron and hole density operators p,(Q) and p,(Q), we will introduce the
density operators of the optical plasmon denoted as 5(Q) and the acoustical plasmon denoted as
D(Q) following the relations

pQ) = 5.(Q)-5,Q),

DQ) = 5.(Q)+5,Q),

,be (Q) — ﬁ(d) ; [S(Q) ’ (79)

Here, for simplicity, many indices that label the electron, hole, and plasmon density operators are
omitted. But they must be kept in mind and may be restored in concrete cases.
In the plasmon representation, Hamiltonian H ., (78) looks as

DO) |

Hmex,lz(Emex( h? m) /umex) 2 (80)

+(Ge—h( My eq) - ,ue"'luh)p()

Here, the sums and differences of the Landau quantization level energies, the Coulomb self-
interaction terms, and the chemical potentials are defined as follows:

Ene(RiMy60) =B (RiMy,6) - 11 (R &),

E,(RiMy, &) = Eg +E.(R)+E, (M, &),

Moy = He + My,

Gy (RiMy,6,) =E(R)-E (M, ;) - I.(R) + 1, (&)
The remaining part H ., of Hamiltonian (72), after the excluding of the linear terms, is
quadratic in the plasmon density operators. It has the form

(81)

Honia = 3 We o QADAQ) +W, ,(@D@D-Q) +
© (82)
W, (Q)(AQ)D-Q) +DQH-Q) )|
The new coefficients are expressed in terms of the former ones by the formulas
Wy o(@) = (W, (@) +W, , @)+ 2W, (D).
W, ,(Q)= (we (Q)+W, Q) -2W, (), (83)

W, ,(Q) = Z(we_e (Q-W,, ()
In the case of the e—h pairs of the type (R;;¢,,) they take the form
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Wo-o(Ri;gr;;Q):_( (R Q) +W, (e )+ en(RG gm,Q))
=W 1o () 4 AL+ [0n o A 2@ e A

wa_a(Rl;e,;;d)=( L(RiQ)+ W, (6,:Q) - 2W, ,(R; £,:Q)) =

" ) (84)
=W2Q) (0] 240(@) 5 AL@ = o Av s 2@ A @)
W o (R0 @) =4 (W o (Ri D)Wy (4 D)) =
- V@[(Iaolz Ao @ +bf ALD) ([ A2 @ ool A,a (@) }
In a special case m=3 we have
Wy 4 (R;;£,;:Q) =W (Q)| 1 |b1| [3QI Q“I;‘+iQ6I§ :
W, ,(R;&,;Q) =W (Q) —MQZM o] (3Q2|2—§Q4|4+iQ6I6j
a-a 1“m> 4 0 4 0 4 0 24 0 !
(85)
Wy, (Ri;&,:Q) =W(Q)| 1 |bl| ‘ ‘ (BQI Q4|§+2—14Q6I§j X
Ibll

1
X 3Q°1? 17 +—Q°¢
[ Q* Q 0t 4Q 0
Side by side with the magnetoexciton subsystem, the photon subsystem does exist. In our case, it
is composed of photons with a given circular polarization, for example, &, . Their wave vectors

k =§GL£+IZ” have the same quantized longitudinal component equal to Ll where L, is the

resonator length and arbitrary values of the in-plane 2D vectors IZ”. The photon energies are
he |z?

ho, =— —
n, \| L

| where n, is the refractive index of the microcavity. The full number of the

C

photons captured into the resonator is determined by their chemical potential ., .
The zeroth order Hamiltonian of the photons in the microcavity looks as

HO,ph:Z(ha)‘ :uph kcrkcr (86)
ki

where cga,ch are the creation and annihilation photon operators and o denotes a definite
circular polarization. Only the case o =— will be considered. It must be supplemented by the
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Hamiltonian of the magnetoexciton—photon interaction deduced above in a more general case. In
the case of dipole-active band-to-band quantum transition with the combination of the e—h states
(R,,&;) we have

Hmex—ph = Z[(D(R]P Rl’ ‘93_)(5-% s &:Ah )CE’_\PZX (IZ”) +
K (87)
+0' (R 5)(57 06y, )t W.,() |
The interaction coefficient is as follows:
oD e h L
(0(k||1 Ri&;)= [_ J P.(0)T (k||’ Ri&s),
olo Lca’;z (88)
T (kiR 25) = ad, "$(0,0:k) —bic; d(L 3 K)
The magnetoexciton creation and annihilation operators were written in a shortened form in (87)
because there are too many indices in its full description as follows:

qJZX(Q)=\11 Q;R;M, &) \/_Zeuoyuo
The full Hamiltonian of the magnetoexciton—photon system for a more actual combination
(R, &5) may be written

H = H mex— ph + Hmex,Z (90)

Its remarkable peculiarity is the presence only of the two-particle integral plasmon and
magnetoexciton operators, rather than of the single-particle electron and hole Fermi operators. It
permits considerably simplifying the deduction of their equations of motion. For this reason, the
commutation relations between the full set of four two-particle integral operators

P(Q),D(Q), ¥! (Q) and P, (Q) are needed. They are listed below

[ 5(@). 5(F)]=[ B(Q), B(F) | =2isin(z(F,Q)) 5(G+P),

 5(Q),D(P) |=2isin(2(P,Q))B(P+Q),

PL(P) VL@ ] =5kr(5,<5)—1[isin(2(c3, F))5(Q~P)+cos(2(Q.P))B(Q-P)I

(89)

R, I+Q>< My .5, —t+&

+Hm+H

mex,1

B0 - 7(P,-Q) = 2(-Q.P),

[¥,(F). %! (ﬁ>]=1—%6(0), ©o1)
Q). ¥L(P)|=2

Q). %..(P)] =—2nsm(2<5 Q) ¥, (F-Q),
EOENGIE

D@V, (P)]=
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5. The magnetoexcitons in the Bose-gas model description

The Hamiltonian describing the 2D e—h pairs with electrons and holes situated on the
given Landau quantization levels and interacting between themselves through the Coulomb
forces was represented as a sum: H__.+H It is expressed in terms of plasmon density

mex,1 mex,2 *

operators p(Q) and D(Q). It is useful to represent it in the model of weakly interacting Bose
gas. To this end, the wave functions describing the free single magnetoexcitons ‘z//mex(ﬁ)> as well

as the pairs of the free magnetoexcitons with wave vectors P and R ‘;//mex(ﬁ),z//mex(ﬁ)> were
introduced:

v (F)) = W1 (P)[0),

(v (P)| = (0] ., (P),

Ve (P) 1w (R)) = WL (B) WL, (R)[0),

(Ve (P) W (R)| = (0] ¥, (), (P)
where |0> is the vacuum state of the semiconductor. They were used to calculate the matrix
elements

(92)

Emex(ls) = <l//ex(|5)‘ H nex1 + Hinex.2 | Wex (|3)>,

W(Isl’ F_él’ F_52’ ﬁz) = <l//ex(}31)wex(§l)‘ Hmex,l + Hmex,Z V/ex(ﬁz)l//ex(ﬁz)>

With these matrix elements and with the magnetoexciton creation and annihilation operators, the
new Hamiltonian in the model of weakly interacting Bose gas can be constructed. It looks as

H=H,+H,,,
:ZEmeX(P)‘P (P)¥, (P),

(93)

\ L (94)
Hint = - Z - W( 1 l; I:)2’ Rz)\PZx(Pl)\PZx(Rl)lPex(Rz)lPex(Pz)’

R.RLP Ry
P+R =P,+R,

Recall that the magnetoexciton creation and annihilation operators in turn are constructed from
electron and hole creation and annihilation Fermi-type operators a;,ap,b;,bp as follows:

¥ (P)= Ze'P“° (95)

—Xt+

2
and their composition in all calculatlons is taken into account. Some of them are demonstrated
below using commutation relations (91):
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ap|0>=bp|0>=0’
p(Q)|0)=D(Q)|0) =¥, (Q)]|0)=0,
D(O)¥L,(P)|0) =2¥L.(P)[0),
AO)PL(P)]0)=0, (96)
AQ)H(-Q)L,(P)|0) = 4sin* (2 (P,Q)) ¥L,(P)|0),
D(Q)D(-Q)¥.,(P)|0) = 4cos*(Z(P,Q) L, (P)[0),
(5(Q)D(-Q) + D(Q)H(-Q) W (P)|0) =0
In the present model, the main role is played by the magnetoexciton creation and annihilation
operators, rather than by the plasmon density operators.

Magnetoexciton creation energy E,_ (P) from Hamiltonian H, consists of three parts:
Emex(ls) = Emex(Rl; Mh’gr;; IS) = Eg(Rl; Mh’gr;) - IS (Rl;é‘%)"i'

23 Wo (R &, Q)sin’(Z(P,Q) + 22 W, , (R;;¢,;Q) cos*(Z(P,Q)) = (97)
S S

=E,(My,,&,:R) =1, (Rii ;) +E(R;; &, P)
The first component E (S,,R;;S;,M,,&,) plays the role of the band gap, whereas difference
l,(s;R)—E(R;&,;P) determines the resulting ionization potential of the moving

magnetoexciton with wave vector P. In the limiting case P—o, when
IIsim E(R;&.;P)=1,(R;&.), the resulting ionization potential vanishes and the e~h pair becomes

unbound. Nevertheless, the presence of positive term E(R; ¢, ; P) in formula (97) plays the role

m?
of the kinetic energy of the magnetoexciton at least in the region of the small values of wave
2p2
with effective mass

vector P, where this term can be represented in a quadratic form

M (B) depending on magnetic field strength B. Zeroth-order Hamiltonian H, (94), together with

the similar Hamiltonian for the cavity photons and with the Hamiltonian describing the
magnetoexciton—photon interaction, gives rise to quadratic Hamiltonian H, forming the base of
the polariton conception. It looks as
H, = 3 B ()WL (), () + D hacl ¢, +
K ) o K ) o (98)
2| pK)(G; 06, )¢ W (K)+ ' (K)(5; # Gy, )l W (K) |

K
In this expression, the chemical potentials of the magnetoexcitons and the photons are omitted

until the single-particle polariton formation is investigated. They will be restored when the

collective properties of the polaritons will be discussed. The diagonalization of quadratic form

(98) is achieved introducing the polariton creation and annihilation operators LQ‘ |:N in the form
|
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of a linear superposition

|:|;" = X(Rh)\Pex (Rh) + y(R]|)CR,_ (99)
It is a simplified form without the antiresonant terms because they are not introduced in the
starting Hamiltonian H, (98). Quantities x(IZ”) and y(lZ”) are known as Hopfield coefficients

[28, 29]. In the case where the scalar product of two circular polarized vectors equals 1, the
energy spectrum of two polariton branches looks as

. E(k)+ho. 1 = -
hoo(k) == (B (K) e, + 4] (k) (100)
The Rabi frequency for the e—h pair in the states (R,,&;) is as follows:
¢(O)| e 1 S
| |29 P, Oad,]; *6 (101)
|V POl =
In the absence of the RSOI, coefficients a, =d, =1 and expression (101) coincides with formula

(12) in [21].
The Hopfield coefficients obey to the normalization condition and are equal to

(ho,K)=ha,)
(ho (k)1 ) +1p(K)(G; # G )
| p(k)(5; *Gy,)
(ho, (&)t ) +10(K)(&; #6, )
x(k)| +y@&)[ =1
p(k)(G] 2 5y,) = 0(K)(G; * 5, ) €7, (102)
[(o; 26w, )=
x(k) = [x(k)[e” . y(k) =[y(K)[e" ™.
a(K)-B) +7() =0
The last equality results from the fact that polariton energy spectrum 7w, (k), the

magnetoexciton and cavity photon bare energies are real entities. This relation will be used below
at point IZ” =0 where these phases will be simply denoted as «, f and .

Now the breaking of the gauge symmetry of the 2D magnetoexciton—photon system
leading to the BEC of the magnetopolaritons on the lower polariton branch at point IZ” =0 will
be discussed.

x(k)| =

y(Kk)| =

(6, *53,)

6. Breaking of the gauge symmetry and the mixed photon—magnetoexciton—acoustical
plasmon states

A method to introduce the coherent macroscopic polariton states in a system of 2D e-h
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pairs and photons captured in the microcavity was proposed in [30, 31]. It was assumed that the
e—h pairs were excited on the quantum well embedded into the microcavity and interacted with
the photons captured in the resonator giving rise to the 2D Wannier—Mott excitons and polariton
formation. As was shown in [30], the proposed method is equivalent to the u-v Bogoliubov
transformation for the electron and hole Fermi operators and to Bogoliubov displacement
transformation for the photon Bose operators. This method will be now applied to the case of 2D
magnetoexcitons and photons in microcavity with the aim to investigate the BEC of

magnetopolaritons in the state with IZ”:O on the lower polariton branch. The unitary
transformation proposed in [30] looks as

D(N,) =exp(N, (L - L)) (103)

where N is a macroscopic number of the condensed polaritons at point IZH =0 of the lower
polariton branch. The cavity photon with IZ” =0 has a quantized longitudinal projection of its

wave vector K equal to z/L.. Only the photons with a given circular polarization are
considered. In this case, we have

L, =x(0)¥.,(0)+y(O)c, .

=

x(0) =|x(0)|e*, (104)

y(0) =|y(0)[e”
and the starting unitary transformation can be factorized in two independent unitary
transformations acting separately in two subsystems of magnetoexcitons and of the photons as

follows:
D(/N,) = D, (\/N, [x(Q))D,;, (N, [y(O)),

., (JN, [X(Q)) = exp| N, [x(©@)| (e ¥L, (0) - ¥,,(0)) |, (105)
M{‘wwpembfﬂww[w& —‘HJ]
-

Taking into account the expressions for the magnetoexciton operators
.. 1
¥ (0)=——> ab’,
: o Z a/bl,

¥, (0) =

. (106)
—> b
e
one can transcribe operator D, (/N |x(0)]) in the form D,, (\/N_p|x(0)|) =e’ =] Je* , where
t
= N, [X@)|(e ¥ (0)-€“ ¥, (0)) = 2,
t

7, =v, |x(0)| (e “ab’, —€“b_a)
The unitary transformations of the Fermi operator are

(107)
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D,,(\N, [x(@))aD (N, [xO)) =e*ae™ =a, =

=a, cos(v, [x(0)) —bl,e ™ sin(v, [x(0))),

(108)
D, (/N |x(0)|)b_t LN |x(0)|) e“b e =4, =
=h_, cos(v, |x(0)]) +a/e " sin(v,|x(0)))
Here, the filling factor of the Bose-Einstein condensate was introduced
N,
W = Vp (109)

Side by side with unitary transformations (108) for the single-particle Fermi operators, one can
also obtain the transformations for the two-particle integral operators. They were obtained using
commutation relations (91) and look as follows

'?/(2) et = jg) cos(2v, [x(0))) - 4(Q)sin(2v, |x(0))),

e’0(Q)e " =(Q)cos(2v, [x(0))) +@sin(2vp X(0))),

N
6(Q) = ¥,(Q)+ 6", (-Q), (e = Q) (110)
e ] Qe =e ¥ L(@)+2sin(2v, X)) DJ@ +2foos(2v, [X(O)) -16(Q),

e'e“ V¥, (-Q)e =¥, (-Q) +%sin (2v, 1x(0)1) j%) +5[COS(2VP |X©1)-10Q)

As one can see, the superposition of the magnetoexciton creation and annihilation operators in the

form 6(Q) forms a coherent mixed state with acoustical plasmon density operator D(Q) . These

JIN
mixed magnetoexciton—plasmon states were discussed in [32—-34].
The full Hamiltonian of the magnetoexciton-photon system consists of four parts as
follows:
A = s + Ho g+ g + H (111)
It will be subjected to unitary gauge transformation (105), which means calculation of the
following unitary transformations:

Dy (\Nj, 1X(0) D(H e + Hie2) s (F X)), Dy, (N, [ YO DH, 1n D (N, 1Y) D,
D, (\/N, 1X(0) DDy, (N, 1 Y(0) DH e Din (N, [ YO DDLIGN,, [ X(0) )

The first of them is

mex,2 mex—ph
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H e = Do (YN, 1X(0) DH, Do (N, 1X(0) ) =

(B (R My )~ 11, )02y, | X(0) D22 +

HG RiMy )~ + 1) 2 - (112)
—gsin(zvp | X(0) ) (Epee Ry My, 1) = 12, ) 6(0),

/uex = lue + luh
The second one looks as

Aoz = Do (YN, 1X(0) DF, . DEGN, 1X(O) ) =

=%;{woo @pQ)A(-Q) +W, , (@) cos*(2v, | x(0) BG)D(-G) +

+sin’(2v, | X(0) INOG)O(-Q) - 113)
—cos(2v, | (0) Dsin(2v, | x(0) DVN (B@)0(-G) + A@)B(-Q) |+

W, , (@) cos(2v, |xO) ) (AG)D(-G) + D) H(-3)) -

~sin(2v, | x(0) IWN (5(@)6(-Q) + Q) (-Q)) ||

The third transformation concerns the captured photons

Hon = Do (YN, 1Y(0) DHy D (YN, [Y(O)]) =

= (ha)” _:uph] N, |y(0) ] +Z(ha)|z — Hpn E,,CE,, -

L K
(114)
_ /Np |y(0)|(hw”—yph][e'ﬂc;+elﬂcﬂ}
L L’ L’
S, _
k=T +k, Ky =ak, +ak,
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The last transformation involves the magnetoexciton and photons operators as follows:

lf'mex—ph = D(N)ﬁmex—ph Dil(\/N>p) =

D,, (N, [X(0) AH oy =[N, 1 Y(O) [0(0)e (57, ¢ 5y, )L, (0) +
L
+¢" (0)e"” (&; « Gy, )P (O (YN, [ X(0)]) =

=— N, [y(0) [{¥], (0)[ (cos(2v, | x(0) ) +1)p(0)e ¥ (G 5y, )+

LC

+ % (cos(2v, | x(0) |) ~1 g (0)e” > (5’1 °Gy )]+
L

0, O 005(29, [XO) ) +Dp 00 (, #5y,)+
L

+ % (cos(2v, | x(0) ) ~Dg(0)e* (5, ¢ Gy )1+
L

|j(0) —|ﬁ’+|a( 1 . 0_:;4 ) " ¢* (O)eiﬂ—ia’ (5—; ° &Mh )]}+

2JW co :

+3 (COS(ZV X D+D) Y [o(k)(S; * Gy, ) ¥ (k) +9" (k)G # Gy, )i Yo (k)] +

Ky

#2032, | XOD-DY, [p(R)e™ (65 + 3, )o, P (K)+

K

+9" (k)& (5, #G, )} WL (K )]+

S8y, [XO D TLo(K)e" (6 +53, e, DO et (5 w6, 0, )
I My \/W 1 M, \/W

K

(115)

Taking into account relation (102) between phases «,  and y and definition (110) of operator
6(0), one can represent the transformed Hamiltonian with the broken gauge symmetry in the

form
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H=N ) |y(0)|2 (ha)” —yph]—ﬂ|y(0)|[hw” —#an(e_iﬂCTn +eiﬂcﬂJ—
L ' L

L L

BN, B(Emex(&: M, 65—t )sin(2v, [x(O)) +

(0(0)(@ '5Mh]
L

D;O)I:Emex(R My, &) = Hex — 2V, SIN(2V, [X(0)]) |y (0))|

+V, |y (0)]

cos(2v, |x(0)|)} +

|+

+(Ge_h(Rl;Mh,g;)—,ueJr,uh)p( )+Z(ha) ,uph)cT

(D(O)[ MhJ
LC

+ z{ 5 0(@)AQ)H(-Q) +W, ()] cos’(2v, | x(0) ND(Q)D(-Q) +
+sin’(2v, | x(0) )NO(Q)I(-Q) -
—%sin(4vp | X(O) DVN (D@)I(-Q)+(Q)D(-Q)) | +
W,_, (Q)[ cos(2v, | x(0) ) (A(Q)D(-Q) + D(Q) A(-Q)) -
=sin(2v, | x(0) VN (5(9)(-Q) + 6(@Q) p(-Q)) ]| +

+3 (COS(ZV X)) +D [p(K)(G; * G, )0 ¥ (k) +9 (K)(G; ¢ Gy, )t ¥ (K] +

+§(cos(2vp | X(0) ) —1)kz [p(k))e™ (51 @Gy, )T W (k) +
+' (ke (6; 0 Gy, )ei WL, (k)] +

" DK) vy e - . D'(K)
- sm(zv 1X(0) ) [p(k)e™ (G ® G, )C; JW” +¢" (k) (ak--aMh)ck-,W“]

K

(116)

Looking at this expression, one may conclude that, side by side with the u-v-type transformation
(110) of magnetoexciton superposition-type operator 6(Q) and acoustical plasmon density
operator D(Q)/ JN', another mixed state of the acoustical plasmon—photon type appeared under

the influence of the magnetoexciton—polariton BEC. In addition to them, there are anti-resonant-
type terms in the magnetoexciton-photon interaction, even if they were not included in initial
Hamiltonian (87). The obtained results permit determining chemical potentials x,, and ux,, and

investigating the energy spectrum of the collective elementary excitations.
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7. Conclusions

The influence of the RSOC on the properties of the 2D magnetoexcitons was described
taking into account the results concerning the Landau quantization of the 2D electrons and holes
with nonparabolic dispersion laws, pseudospin components and chirality terms [18, 19, 22]. The

main attention was paid to the study of operators A(Q) and D(Q) that, together with
magnetoexciton creation and annihilation operators ¥} (k,) and ¥, (k) form a set of four two-

particle integral operators. It was shown that the Hamiltonians of the electron-radiation and
Coulomb electron—electron interactions can be expressed in terms of these four integral two-
particle operators. The unitary transformation breaking the gauge symmetry of the deduced
Hamiltonian and the BEC of the magnetoexciton—polaritons were introduced in the frame of the
Keldysh—Kozlov—Kopaev method using the polariton creation and annihilation operators. They
were expressed in terms of the same magnetoexciton and photon operators using the Hopfield
coefficients in a simplified form without the anti-resonance terms because the energies of the
participant quasiparticles are finite situated near the energy of the cavity mode. The unitary
transformation is factorized as a product of two unitary transformations acting independently in
two magnetoexciton and photon subsystems. It was realized that the BEC of magnetoexciton
polaritons supplementary gives rise to the acoustical plasmon—photon interaction and to a new
type plasmon-polariton formation. The antiresonance terms of the magnetoexciton—photon
interaction also appeared even if they were neglected in the starting Hamiltonian. The mixed
magnetoexciton—acoustical plasmon states in the absence of the RSOC were investigated in
[32—34]. The obtained final transformed Hamiltonian will be used to study the collective
elementary excitations.
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