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Abstract 

In this paper the concept of undular frame is defined as a system of tools consisting of 
waves, having the same nature as observed waves. Such definition of used tools set is 
equivalent to the problem about behavior and self-organizing of waves in absence of 
heterogeneous objects. The theorem has proved that the velocity of signal propagation in 
medium does not depend on undular frame selected. The location of undular frames cannot be 
determined relatively to the medium-carrier of waves. Between undular frames the principle 
of relativity is completely observed, is not possible to distinguish any undular frame. If the 
waves interactions are considered in undular frames, then there are gained not only trivial 
solutions corresponding to a principle of superposition, but also solutions, which describe 
interactions between waves as between mechanical particles. At the interaction of stable 
standing wave with the traveling wave the quantization of the latter takes place. 
 

1. Introduction 
The undular processes are applied as the etalons of time and length as it is known. For 

example, as the time etalon, the period of oscillations of caesium atoms is chosen, and the 
wave length of krypton atoms radiation serve as length etalon. In other words, the measuring 
of time and lengths represents operations of comparison with the waves parameters: with the 
period T and wave length λ.  

Usually it is considered, the etalons do not vary during measuring and they are 
heterogeneous in relation to investigated processes. In practice, any tool is exposed to action 
during measuring. The changes in tools are taken into account through errors. However there 
are cases, when the tools of measuring are the participants of processes. Hence, the changes, 
which happen to tools, cannot be taken into account with the help of errors. This situation 
takes place, when all objects, which participate during the measuring process, have an undular 
nature.  

The subject of the present work is the study of wave interaction provided that as tools of 
time and length measuring serve waves, which exist in same medium, as investigated waves. 
Or else, we want to describe, how the waves “perceive” each other. Such statement, in fact, is 
equivalent to a problem about behaviour and self-organizing of waves in unbounded medium, 
without heterogeneous insertions. We have published separate results on examination of this 
problem in works [1-7]. In offered paper we systematized results on the kinematics of waves, 
described in undular frames. 

 
2. The metric of undular frames 

 
2.1. The definition of undular frames 

The result of interaction of free physical object is its transition from one reference 
system in other. Therefore, first of all, we shall spot concept of the undular reference system, 
or frame, and the rules of transition from one system in another.  
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The reference system should contain scales for measuring the time and the length. Such 
scales consist of repeated intervals of time and length. The standing wave possesses the 
property of periodicity in space and in time, it can be described by expression: 

( ) ( ).coscos tkxAa ω−=             (1) 
By setting such wave, we thus set the metrics, namely: 

- the direction of an axis x - coincides with a direction of the wave propagation; 

- the spatial gauge - is determined by the wave length 
k
πλ 2

= ; 

- the time gauge - is determined by the wave period 
ω
π2

=T . Or else, the standing wave (1) 

execute  a role of the ruler and chronometer simultaneously. 
If in medium there is a certain wave-object, described by expression: 

( ) ( )txkAa 000 coscos ω−= ,                   (2) 
the measuring of its length in a frame (1) consists in definition of the number equal to ratio of 
wave-object and wave-gauge lengths: 

λ
λ0=n .                      (3) 

Similarly, the measurement of wave-object period consists in determination of ratio of 
wave-object and wave-gauge periods: 

T
Tn 0=                        (4) 

The wave-object (2) can be decomposed into two travelling waves, which run in 
opposite directions, of a kind: 

)cos(
2 0001 xktAa −= ω                        (5) 

).cos(
2 0002 xktAa += ω                    (6) 

Generally, in expressions (5) and (6) the frequencies and the wave numbers can differ, 
that is, these expressions take view: 

)cos(
2 010101 xktAa −= ω  And ),cos(

2 0002 xktAa += ω   

at that  001 ωω ≠  and .001 kk ≠  Then the wave-object will be described by the formula: 

.
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Formula (7) describes so-called beats, or standing wave, the maximums of which are 
moving in the course of time. We shall term such wave - quasi-standing wave. At that, the 
value 

2
' 001 ωω

ω
+

=          (8) 

and  

2
' 001 kkk +
=                   (9) 

are perceived as frequency and wave number of moving wave-object (7), and its velocity is 
determined by expression 

.
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0 kkt

xv
+
−

=
∆
∆

=
ωω        (10) 
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If the observer goes with velocity defined by expression (10), from his point of view the 
wave (7) will be standing, or fixed, and it will be described by expression having view (2), or, 
at n=1, by expression of view (1). Hence, in system of the moving observer this wave can be 
used as a wave, which sets a frame. Thus, we come to the conclusion, that within the 
framework of the accepted model, there can be many reference systems, which are moving 
one, relatively another with various velocities, and all of them are equivalent. 

Definition: the undular reference system, or undular frame is a frame, in which as time 
etalon there serves the period of standing or quasi-standing wave in a fixed point, and the 
length etalon is equal to distance between two points having same phase.  

 
2.2.Theorem on invariance of velocity of traveling wave relatively to undular frames. 

As it is marked above, a preferred frame cannot exist. Or else, for undular frames the 
principle of relativity is realized. However there is one circumstance, which can put under 
doubt last statement. The velocity of traveling waves c, described by expressions (5) and (6) 
is determined by properties of medium. Naturally there can be the idea: to use a standing 
wave as the tool for determining velocity of traveling waves c. Then, knowing velocity c, to 
determine velocity of undular frame concerning the medium. In fact, such experience is 
similar to a known experiment of Michelson and Morley, with help of which the attempt was 
undertaken to spot velocity of the motion concerning the ether in 1887. In our case, if such 
experience will give positive result, then it will be possible to choose one "true undular 
frame", in which the velocity of the motion concerning the medium - carrier is equal to zero. 
Such system will be privileged in relation to other undular frames. In this case, for undular 
systems the principle of relativity will not be realized. Let's prove, that it not true. 

Theorem: the velocity of traveling waves c has  the same value in all undular frames. 
We suppose there are two undular frames, which are described by expressions: 

( ) ( )tkxAa ωcoscos −= ,        (11) 
and 


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cos' 1111 ωωωω .     (12) 

The relative motion velocity of these systems is determined by expression: 

.
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TTc
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v       (13) 

Let admit that, some wave-object rest in system (12) and in this system it is described 
by the formula: 

( ) ( ).''cos''cos' 0000 txkAa ω−=       (14) 
The same wave-object, in system (11) will be described by expression  
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Let's copy (15) taking into account (13): 

.)(
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Expressions (16) and (14) describe the same wave-object. In expression (16) the 
value )( xvt − represents instantaneous coordinate of wave-object, as well as x' in expression 
(14). The transformation of segment length along coordinate should take place under the same 
law as transformation of this coordinate. Hence, the length of moving wave-object (16) will 
be 
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,' 000 vT−= λλ  
and its wave number: 

.2'
00

0 vT
k

−
=

λ
π         (17) 

Following a similar reasoning for frequency, we shall obtain:  

.2'
020

0
λ

π
ω

c
vT −

=        (18) 

The ratio of circular frequency ω to a wave number k is equal to velocity of traveling 
wave c. Thus, the proof of the theorem formulated above is reduced to the demonstration of 
relation 

'.'
'
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0
0 ckkc === ωω  

By using (17) and (18) we shall obtain:  
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In view of expressions (3), (4) and (13) we can write: 
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We have proved: in undular frames, the velocity of traveling wave c does not depend on 
choice of frame. Hence, the velocity of traveling wave cannot be used for definition of 
velocity concerning the medium-carrier, and all undular reference frames are equivalent. 
 
2.3. Transformation of the length and time scales at transition from one undular system 

in another 
We will found the transformation rules for segments of length and time intervals at 

transition from one undular system in another. Let's choose two undular frames. For 
distinguishing them, one of them we shall mark by an accent. We assume, that, the marked 
frame moves relatively not marked system with velocity v.  

The measuring of the length segment and time interval in a undular frame consists in its 
comparison with the respective gauges, as which serve: the wave length λ and period T. 
Hence, for the segment of length x and time interval t in not marked system it is possible to 
note: 

nTtnx == ,λ , 
and for marked system: 

'.','' nTtnx == λ        (19) 
The wave-object, situated in marked system, will be described by expression: 
 

( ) ( ).''cos''cos' 0000 txkAa ω−=       (20) 
 
The same wave in not marked system will look like: 
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We shall term proper frame the reference frame, in which wave-object is situated. 
Comparing expressions (2) and (7), we can define a proper frame and as system, in which 
ω1=ω2 and k1=k2. According to expression (13), the velocity of proper system relatively to 
laboratory frame can be expressed as  

( )
100

010

010

010 )(
kk

kkccv
+

−
=

+
−

=
ωω
ωω .       (22) 

Relations from here follow: 

vc
vckk

−
+

= 001        (23) 

and 

vc
vc

−
+

= 001 ωω  .       (24) 

By inserting (23) and (24) in (21) we shall obtain:  

.cos)(cos 2
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
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
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c
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Let's compare (20) and (25). These expressions describe the same wave-object. In both 
expressions, the arguments of first cos represent the same ratio of length segment to gauge i.e. 
to wave-object length, in respective reference frame. This is a dimensionless value, or simply 
a number, which does not depend on a reference frame. Therefore we can equate the 
arguments of cos from (20) and (25), and obtain:  

).(
'

'
0

0 vtx
vc

c
k
kx −

−
=       (26) 

In correspondence with expression (17) and (19) 

vtx
n
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k

−
=

−
=

π
λ

π 22'
00

0 ,                (27) 

here n is number of waves lengths λ, located on a considered segment x. 
Inasmuch all undular frames are equivalent, similarly, by transferring from marked 

system in the not marked system, it is possible to obtain the expression: 

'''
2

'''
2
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0 tvx

n
Tv

k
−

=
−

=
π

λ
π .             (28) 

In this expression v’- represent the velocity, with which not marked frame move from 
“point of view” of marked system. Hence: 

vv −=' , 
and (28) will be copied:  
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Let's insert (27) and (29) in (26): 
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In correspondence with (19) 
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Hence: 
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That is equivalent to: 

( )vtxvtx

c
v

vtxx −=
−

−
=

−

−
= γ

β 2

2

2 11

' ,       (30) 

where 
c
v

=β  - is- normalized velocity, 

and      
21

1

β
γ

−
=  .        (31) 

We remind, in our example the proper system is the marked system. Let the length of 
segment in the proper system be equal to: 

''' 12 xxx −=∆ . 
We designate as ∆x the length of segment in system, relatively which it moves. Then, in 

correspondence with (30), we shall obtain:  
( ) xxxxxx ∆=−=−=∆ γγ 1212 ''' .      (32) 

Having done a similar transformations with argument of second cos in (25), we shall 
obtain the expression for proper time, corresponding to (26): 

)(
'

' 2
0

0 x
c
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vc
ct −
−

=
ω
ω .                (33) 

Similarly to formulas (27) and (28), for frequencies it is possible to write the 
expressions: 

x
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Here, n is the number of wave-object periods T, elapsed from the beginning of readout 
up to a considered instant. We insert (34) and (35) in (33) and obtain: 

2
2

2

2

2

2
)(

))(''(
)(2

''

2

' x
c
vt

vcx
c
vt

cx
c
vt

vc
c

x
c
vt

n

x
c
vt

n

t −
−+

=−
−

−

+
=

π

π

. 

Let's solve this expression relative to t’ taking into account that: 
cTnlxnTt === '

','','' λ . 
We obtain:  







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−
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t 2

2

2
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Hence, the relation between measurement results of time interval in two reference 
frames will be the following:  

( ) tttttt ∆=−=−=∆ γγ 1212 ''' .        (37) 
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Here ∆t’ represents the time interval between two events happening in the same point x, 
in proper system; ∆t  is the same interval measured in system, relatively which the wave-
object moves. 

Expressions (30) and (37) represent the Lorentz transformations. From the proofs above 
mentioned, it is possible to make the following conclusions: 
- the Lorentz transformations are not linked to presence or absence of any waves medium-

carrier, in other words, presence of the waves medium-carrier does not contradict Lorentz 
transformations; 

- the Lorentz transformations can be presented as algebra (group), defined on the set of 
functions of view (5) and (6).  

Last statement was discussed by us in more detail in works [7, 8]. 
 

2.4. The transformation of parameters of traveling waves at frame changing. 
For the analysis of interactions between waves, it is necessary to find else the 

transformation rules for frequency and wave number of traveling wave at transition from one 
undular frame in another. Let's consider a traveling wave described by expression: 

( )kxtAa −= ωcos ,         (38) 
in two states, with different values of phases: 

000 kxt −= ωϕ         (39) 
and 

111 kxt −= ωϕ .         (40) 
If  

nπϕϕ 201 =− , 
where n - integer, the difference 

n=−
π

ϕ
π

ϕ
22

01        (41) 

describes the number of periods between states with phases ϕ1 and ϕ0. Taking into account 
(39) and (40), it is possible to copy expression (41): 

( ) ( ) nkxtkxt πωω 20011 =−−− , 
or: 

n
c
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01 =






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−− .       (42) 

As n is simply a number, it should not depend on reference system. Hence, for any other 
frame (marked by an accent) the same expression will be valid:  

n
c

xxtt πω 2''''' 01
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




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Equating the left-hand parts of expressions (42) and (43), we shall obtain:  
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Taking into account relations (30), (36), and also (31) we shall copy (44): 
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
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
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We consider the change of a phase from ϕ1 up to ϕ2 in a fixed point x1=x0. This 
corresponds to passage of a wave packet in interval of time t1-t0. Expression (44) will take the 
view: 

( )βγωω += 1' , 
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or: 

β
βωω

−
+

=
1
1' . 

This expression allows to obtain the expressions for frequencies of travelling 
components of moving wave-object:  

β
βωω

+
−

=
1
1

1   
β
βωω

−
+

=
1
1

2 ,      (45) 

where ω is the frequency of wave-object in the proper reference frame. 
Taking into account, that ck=ω , we shall obtain similar expressions for wave 

numbers: 

β
β

−
+

=
1
1

2 kk   
β
β

+
−

=
1
1

1 kk       (46) 

Thus, the formulas, which relate the values of frequencies and wave numbers of a 
traveling wave in different undular systems, coincide with the relativistic formulas for a 
longitudinal Doppler effect.  

 If to insert expressions (45) in (8), we shall obtain the relation between the oscillation 
frequency of wave-object in proper system ω and oscillation frequency of wave-object ω’, 
measured in marked system: 

211
1

1
1

2
'

β

ω
β
β

β
βωω

−
=






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−
+

+
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= .      (47) 

 
3. Kinematics of interaction of stables waves-objects. 

It is accepted to consider, that in linear media the principle of superposition is observed, 
and the waves practically do not interact among themselves. When talking about interactions 
between waves, it is meant usually that the medium is either nonlinear, or nonuniform. We 
shall demonstrate, that, if to describe process in undular frames, along with the solution, 
which corresponds to the superposition principle, it is possible to obtain the solution, in 
correspondence with which, the waves can interact among themselves in linear, homogeneous 
medium. 

It is known, that at interaction of waves, the spatially-time resonance of waves takes 
place, the conditions of which have the view: 

0=∆∑ iω 0=∆∑ ik ;,              (48) 
Where ∆ωi and ∆ki are the changes of frequencies and wave numbers of interacting waves. 
That is, at interaction of two waves, the changes of their frequencies will be identical in value, 
but will have opposite signs: 

21 ωω ∆−=∆ .        (49) 
Expressions (48), (49) are the consequence that, time intervals of interaction for the 

both waves are identical. For wave numbers of two interacting waves also it is possible to 
note: 

21 kk ∆−=∆ .         (50) 
However in case of wave numbers it is necessary to mean, that they are vectors. The 

vectors of wave numbers of traveling waves-component are directed to the opposite parties 
and have equal modulo in the proper frame of standing wave-object.  

kkk =−= 21 .  
Therefore resulting wave number of a wave (2): 
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21 kkkr += , 
that is wave-object in a quiescence, is equal to zero. The wave-object, which moves, is 
described by expression: 



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sin'' 21212121 rkkttrkkAa ωωωω  .   (51) 

Here wave numbers of traveling waves-component k1 and k2 do not have equal modulo. 
The resulting wave number of wave-object kr is equal to half from difference of wave 
numbers of waves-components. From here, in view of expressions (46), for a resulting wave 
number of moving wave-object it is possible to note: 
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Thus, expression (50) for resulting wave numbers of two waves-objects, will gain the 
form:  

21 rr kk ∆−=∆           (53) 
In the above-mentioned deductions we did not impose any restrictions on amplitude. In 

particular, the amplitude can be some spherically symmetric function from radius r. Then 
instead of expression (2) will be the wave-object, described by the formula 

tkrrAa ωsinsin)(= ,              (54) 
and representing the superposition of two waves, convergent and divergent, without a singular 
point  in center.  

Let's assume, that there exists a stable spherical wave of the view (54). It means this 
wave maintains the shape in the proper frame at interactions with another wave. We will solve 
a problem about interaction of two such waves, using undular frames. 

In laboratory system, we shall designate: β1 and β2 - the normalized velocities of centers 
of waves-object along the axis x before interaction, and β1', β2' - the same velocities after 
interaction. 

Let the frequencies of interacting waves be equal accordingly to ω01 and ω02 in proper 
frames. Then, according to formula (47), the frequencies of waves-objects measured in 
laboratory system up to interaction of waves, will be: 

2
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and after interaction: 
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In this case expression (49) is possible to write as  
2211 '' ωωωω −=− .         (57) 

By inserting (55) and (56) in (57), we shall obtain the equation for frequencies: 
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Similarly, following expression (52), for resulting wave numbers of waves-objects, 
before interaction, it is possible to note: 

2
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and after interaction: 
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We shall copy equation (53) for wave numbers as 
2211 '' kkkk −=−  

now we shall insert (59) and (60): 
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Thus, we have obtained a system from two equations, (58) and (61), characterizing the 
process of interaction between two quasi-standing waves-objects. Taking into account 
that ck ω= , this system is possible to rewrite as: 
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In this system from two equations, we shall consider as unknowns the normalized 
velocities of waves-objects after interaction. 

The combined equations (62) and (63) have two pairs of the solutions. The first pair is 
trivial solution: 

2211 ';' ββββ ==  .        (64) 
In correspondence with these solutions, the waves pass one through another, without 

any changes. It means expressions (64) describes the wave superposition. As usual these 
solutions are considered single possible for ideal medium.  

The nontrivial solutions of combined equations (62) and (63) will be the expressions: 

BD
A

='1β          (65) 

FD
E

='2β          (66) 

Here we used the following designation: 
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( ) 2
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2
2

2
10201

2
02

2
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2
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2
0121 1122 ωωββωωωωβωββ −−−−−−−=F    (71) 

We shall show that at  

1<<=
c
vβ  

from expressions (65) and (66) the formulas follow which coincide with the formulas 
describing the collision of two bodies in classical mechanics. For this purpose, in formulas 
(65) - (71) there is taken into account only terms having the least power of β, and β  is 
neglected in comparison with unity. In this case expression (65) is conversed in the formula: 
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After a series of transformations expression (72) can be reduced to the form:  
( )

( )0201

02202011
1

2'
ωω

ωβωωββ
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+−
= .      (73) 

In a similar manner, from solution (66) we shall obtain the expression 
( )

( )0201
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By multiplying formulas (73) and (74) on c2 and we shall obtain the expressions 
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( )
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If we change the frequencies by masses in expressions (75) and (76), the formulas will 
be transformed in formulas, which describe the elastic collision of two mechanical bodies. 
Thus, description of process in undular frames, leads us to the conclusion, that the stable 
standing waves can interact as mechanical particles. 
 

4. Interaction between standing and traveling wave 
Let's suppose that the stable wave-object is situated in laboratory system and is 

described before interaction by expression (54). Its projection to the axis x is: 
( ) tkxxAa ωsinsin= .        (77) 

We remind, that the stable wave-object always remains invariant in a proper frame. That 
is, in proper frame it will be described by expression (77) or (54) always.  

Incident traveling wave of the form  
( )xktAa iii −= ωcos        (78) 

will try to deform wave-object (77), but this is not compatible with stability of the latter.  
Therefore wave-object (77) cannot remain immovable in laboratory system and will begin to 
move. Hence, in laboratory system it will be described already by expression for moving 
wave-object: 

( ) 





 −

+
+






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 −
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2

'
2

sin'' 21212121 xkkttxkkxAa ωωωω .     (79) 

Thus, after interaction with a traveling wave, the wave-object will be described by expression 
(77) in proper system, and expression (79) in laboratory system.  
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We will found the wave-object velocity after interaction. We mark the frequency of 
wave-object before interaction ω, after interaction - ω', and frequencies of incident wave - ωi 
and ωi' respectively. Let's insert it in (49): 

ωωωω −=− ''ii . 
At total absorption of traveling wave, its frequency after interaction 0' =iω . Hence 

ωωω −= 'i . 
In view of expression (47): 














−

−
= 1

1

1
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ωωi . 

By solving this equation, we shall obtain velocity, gained by wave-object as a result of 
interaction with the incident wave. 

i

i i

ωω

ωωω
β

+

+
±=

22
. 

We note, that the similar formula describes the interaction of a light quantum with an 
elementary particle.  

Let's consider now the case, when the front of incident wave is non-uniform. It means, 
in expression (78) A = Ai(y). In this case the incident wave acts asymmetrically in relation to 
center of wave-object, and after interaction the wave-object will move under some angle ψ 
relatively to axis x. As the wave numbers of interacting waves vary by the same value, the 
wave vector of the incident wave also will deviate by some angle ϕ (fig. 2). 
 
 
 
 
 
 
 
 

 
 

Figure 2. The wave-object (54), under action of a non-uniform travelling wave 
 in two-dimensional representation 

Let us suppose, the wave-object is situated in laboratory system before interaction, and 
is described by expression (54) (figure 1), its frequency is ω, and resulting wave number - kr. 
The frequency of incident wave (78) before interaction is ωi, and its wave number is ki. The 
same values after interaction we shall mark by an accent. 

As a result of interaction the frequency of wave-object will vary by value ωωω −=∆ ' , 
or, taking into account (47):  



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

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−

−
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1

1
2β

ωω .      (80) 

As was marked above, in the proper frame of wave-object, the wave numbers vectors of 
traveling waves-components are directed to opposite parties and have equal modulo. 
Therefore, in a quiescence, the resulting wave number of wave-object  

kr = 0. 
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After interaction the wave-object will gain some velocity v, and will be described by 
expression (79), in which the wave numbers of components now do not have equal modulo. 
Therefore the resulting wave number of wave-object kr' will be determined in correspondence 
with expression (52): 

21
'

β

β

−
= r

r
kk . 

Thus, the wave number of wave-object will change in result of interaction on: 
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kkkk  

As ck ω= , with ∆kr it is possible to link some frequency ∆ωr,  

2
21

12 β

βωωω
ω

−
=

−
=∆ r , 

taking into account (47): 
βωω '=∆ r . 

Then the difference: 
( ) ( ) ( ) ( ) ( ) 2222222 '1''' βωβωωωω =−−=− , 

or 
( ) ( )222' rωωω ∆=− .        (81) 

As was marked above, the frequencies of interacting waves vary by the same value 
iωω ∆−=∆  

or  
'' ii ωωωω −=− .         (82) 

As the wave number is a vector, the principle of identical change of wave numbers for 
interacting waves should be noted separately for projections on each axis: 

ϕϕ cos'cos iir kkk −=∆ ,       (83) 
ϕϕ sin'sin ir kk =∆ .        (84) 

Let's raise to the second power expression (83) and (84) and sum it: 
( ) ( ) ϕcos'2' 222

iiiir kkkkk −+=∆ . 
By dividing this expression by с2, we shall obtain   

( ) ( ) ϕωωωωω cos'2' 222
iiiir −+=∆ .      (85) 

We shall copy expression (82) as: 
( ) ( ) ( ) ( ) 22222 '2'2''' ωωωωωωωωωωωω +−+−+=+−= iiiiiiii ,   (86) 

now we shall subtract (85) from (86): 
( ) ( ) ( ) ( )'2cos1'2' 222

iiiir ωωωϕωωωωω −+−−=−∆− .     (87) 
In correspondence with expression (81), the left-hand part of (87) is equal to zero, so: 

( ) ( )'cos1' iiii ωωωϕωω −=− , 
or: 
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That is equivalent to expression: 

ii ωωω
ϕ 1

'
1cos1

−=
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Taking into account, that
λ
π

ω
c2

= , expression (88) will be copied as:  

( )ϕλλλ cos1' −=− ii  
Where: λi and λi’ are wave length of incident and dispersed traveling waves, and λ is wave 
length of wave-object “reposing” in laboratory system. If we designate the change of length 
for the traveling wave, resulted from its interaction with the standing wave as iii λλλ −=∆ ' , we 
shall obtain:  

2
sin2 2 ϕλλ =∆ i .        (89) 

This is the Compton’s formula, which describes the interaction between electron and light 
quantum. We have obtained it without use of the concepts of mass, impulse or energy. Thus, 
the Compton effect can be presented as kinematic effect of interaction between the standing 
stable wave and traveling wave. 
 

5. Conclusions 
1. In the deductions presented above, any medium-carrier properties of waves do not appear, 

thus these deductions are valid for all wave types irrespective of medium. It signifies, that 
the Lorentz transformations are not interlinked on the presence or absence of the wave 
medium-carrier and can be considered as rules of some algebra (or group), which is 
defined on set of wave functions. 

2. The application of undular frames allows us to obtain not only a trivial solutions relevant 
to a principle of superposition, but also solutions, which describe the interactions between 
waves as between mechanical particles. 

3. At wave interaction their frequency varies. At interaction between the stable standing 
wave and the traveling wave, the quantization of traveling wave takes place. 
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