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Abstract 

 

Quasi one dimensional organic crystals of tetrathiotetracene-iodide TTT2I3 are promising 

materials for thermoelectric applications. A theoretical study of thermoelectric properties of these 

crystals was initially performed in terms of a one-dimensional (1D) model. In this paper, the 

effect of interaction between molecular chains on the electrical conductivity and thermopower 

(Seebeck coefficient) is investigated. For simplicity, a 2D model is applied. The criteria where 

the weak interaction between 1D molecular chains can be neglected are also determined.  

 

1. Introduction 

 

High energy needs of contemporary society constrain rational use of all energy resources. 

The abundance of thermal energy as a result of human activity or environmental factors, suggests 

the possibility to use even a part of this energy for human needs. For this purpose, 

thermoelectricity comes to propose advantageous solutions to convert thermal energy into 

electricity. The problem lies in the search of materials appropriate for these applications. It is 

required that these materials must have high thermoelectric efficiency in terms of exploitation 

and low cost in their synthesis. Ordinary thermoelectric materials have too low efficiency. 

Recently, attempts have been made to use nanostructured materials. Structures with quantum 

wells superlattices, quantum wires or quantum dots showed higher efficiency than ordinary 

materials. However, the preparation process is quite complicated and expensive. In recent years, 

investigations have been moving towards nanostructured organic materials, which promise to be 

more accessible and less expensive. It was theoretically demonstrated [1] that quasi-one-

dimensional organic crystals may have very promising thermoelectric parameters. A large 

advantage of organic materials is that they can be synthesized by simple chemical methods. The 

thermal conductivity is much lower, which allows considerably reducing the parasitic thermal 

conductivity. In addition, organic materials are more flexible and lighter than inorganic ones. 

Different types of organic compounds are investigated [2-7]. In [3] it was shown that thin 

layers of pentacene doped with iodine may be good candidates for various thermoelectric 

applications. This structure has a power factor ~ 1.3·10
−5

 W/mK
2
. In bilayer structures composed 

of pentacene and an acceptor tetrafluoro-tetracyanoquinodimethane layers, as described in [4], 

the following values were measured for electrical conductivity:  = 43 S/m, Seebeck coefficient  

S ~ 200 μV/K and power factor P = S
2
 ~ 2.0 μW/mK

2
. 

In doped acetylene [5] at room temperature ZT ~ 0.38 was measured. To the best of our 

knowledge, the highest value of ZT=0.57 was obtained in phenylacetylene-capped silicon 

nanoparticles [6]. Another promising feature of these materials is the possibility to reduce the 
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Lorentz number as a violation of the Wiedemann-Franz law, a phenomenon predicted 

theoretically in one-dimensional organic crystals [7]. 

Theoretically, it was shown that TTT2I3 crystals are promising for thermoelectric 

applications [8, 9]. In really existing crystals, ZT = 1.4 is expected after the optimization of 

carrier concentration. Even higher values of ZT were predicted in purer crystals. However, these 

predictions were made in terms of 1D crystal model. This model can be accepted as first 

approximation. Now it is necessary to complete the 1D model and to determine the contribution 

of electron transitions from one chain to another on electrical transport phenomena along the 

molecular chains. This paper concerns to the two-dimensional model of TTT2I3 crystals.  

 

2. Two-dimensional crystal model for TTT2I3 

 

Tetrathiotetracene iodine molecular crystal has a needle-shaped structure. Its internal 

structure can be considered quasi-one-dimensional, because the distance between nearest 

molecules in b direction taken as the x-axis is considerably smaller than in transversal y and z 

directions. The structure of this crystal is described in [9]. Crystals are formed of segregate 

tetrathiotetracene and iodine molecular chains. Iodine molecule receives one electron from two 

molecule of TTT which leads to creation of a hole on the TTT chain. Electrical conductivity of 

iodine chains is very low. Therefore, the transport phenomena in crystal are provided by TTT 

chains and carriers are holes. Although the molecular chains are packed into a 3D crystalline 

structure, the interaction between chains and its effect on transport phenomena is weak and can 

be neglected in the first approximation. This procedure is not applicable to the crystals with high 

level of purity, so as in this case the interchain interaction effects become more important than 

scattering on impurity. 

As in 1D case, we will use the approximations of tight binding electrons and nearest neighbors. 

Hamiltonian of the system has the form 

 

              
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The first term is the energy of free carriers (holes) in the periodic field of the lattice. The 

second term is the energy of acoustic longitudinal phonons and the last term describes the energy 

of interaction between holes and phonons. The energy of a hole is 

 

                                       )cos(2)cos(2 21 akww y bkxk ,                      (2) 

 

where k is two-dimensional wave vector with projections (kx, ky), w1 and w2 are transfer energies 

of a carrier from one molecule to another along the chain (with lattice constant b) and in 

perpendicular direction (with a greater intermolecular distance ~ 2b). The condition of quasi-one-

dimensionality requires w2 << w1. Due to this fact in perpendicular to chains direction the 

transport is of hopping-type. In (1) )( kk aa  are the creation (annihilation) operators of hole with 

the wave vector k and energy ε(k).  

For acoustic longitudinal phonons, we will take 

    )2/(sin)2/(sin 22

2

22

1

2 aqbq yxq   ,   (3) 

where ω1 and ω2 are the limit frequencies for oscillations in x and y directions. In (1) )( qq bb  are 

operators of creation (annihilation) of an acoustic phonon with two-dimensional wave vector q 
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and frequency ωq. Transversal phonons are not considered, because their contribution to the 

transport is negligible.  

The matrix element A(k, q) takes into account two interaction mechanisms: the first is of 

polaron type and describes the fluctuations of polarization energy of molecules due to an 

additional carrier. Coupling constants of this mechanism of interaction is proportional to the 

polarizability of TTT molecule α0. The second interaction is of deformation potential type. 

Molecular vibrations generate the fluctuations of resonance integrals. Coupling constants are 

proportional to derivatives '

1w  and '

2w  of w1 and w2 with respect to intermolecular distances. 

Coulomb interaction between carriers is not considered, so as this interactions is significantly 

screened by polarization effects. 

The square module of matrix element has the form 

 

        
})]sin()sin()[sin(

)]sin()sin()[sin(){/(2),(

2

2
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where N  is the number of molecules in the basic region of the crystal, M  is the mass of TTT 

molecule; γ1 and γ2 are parameters describing the ratio of amplitudes of the first interaction to the 

second ones: 
'

2

5

0

2

2

'

101 /2;/ wae wbα2eγ 52        (5) 

Since w1 and w2 are positive, and '

1w , '

2w  are negative, γ1 and γ2 will be also negative. So as the 

conduction band is not very large, the variation of wave vectors of phonons and holes will be 

considered in the entire Brillouin zone. Kinetic processes are also affected by scattering on 

impurities. They are considered neutral, point-like, and randomly distributed. In this case, the 

scattering on impurities is described by dimensionless parameter D0 which is proportional to the 

concentration of impurity centers [10]: 
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where nim is 2D concentration of impurities, I, dx, dy are effective height and widths of impurity 

potential in x and y directions, vs is the velocity of sound along the chains. 

 

3. Transport proprieties 

 

Suppose that a weak electric field is applied along the molecular chains. In the linear 

approximation with respect to applied field the general expression for electrical conductivity 

tensor   is 

  

s

iaa|aavv
TVk

ei

,k'k,

k'k'kkk'k 


 )()()0(Re

0

2

  (7) 

where Eaa|aa  

k'k'kk  is the Fourier transform of two-particle retarded Green function and 

iE  , 0 , )(kv  is the projection of carrier velocity on   axis. 

Along the x- direction: 
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where 

                 

k'

k'k'kkk k'  iaaaaviG |)(x     (9) 

The equation for xGk
 takes the form of Boltzmann kinetic equation: 

  
q

kkqkqkqkk,kk )()1(
1 xx GWGWnn ,


    (10) 

where kn is the equilibrium distribution function of carriers with the energy )(k , xGk
 has the 

sense of deviation from equilibrium state and 
qkk, W  is the probability of a carrier scattering on 

acoustic phonons 
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Here, the matrix element is defined in (4). qN  is the equilibrium distribution function of 

phonons with the energy q . At room temperature, we can consider scattering processes as 

elastic [10]. We may also replace 1/221 0  qq TkN . The expression in the   functions 

from (11) contains also the carrier energy in direction perpendicular to the chains. We may 

neglect this term too, taking into account the relation w2  w1. Under these conditions, kinetic 

equation (10) can be solved exactly and the relaxation time (k) may be introduced as 
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Finally, we obtain for σxx the expression 
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where e is carrier charge, c is the lattice constant in the direction perpendicular to x, y, and r is the 

number of chains through the transversal section of unite cell,    x
1

x /)( kkvx  
k  is the 

carrier velocity. In order to compare with 1D case we will introduce a new variable

)cos(1 bkx . In variables   and ky the expression for relaxation time takes the form 
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where ε is the dimensionless kinetic energy of the hole along chains in unities of 2w1, and  

  110 /1    is the dimensionless resonance energy. We have also changed the signs of γ1 and 

γ2; hereinafter, they are positive.  
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In the first approximation, where the interaction of molecular chains is neglected, the 

relaxation time achieves a maximum value corresponding to the energy 010 2 wE  in the 

conducting band, when γ1 > 1. Around this energy region, the both interaction mechanisms 

described by the matrix element
2

),( qqk A  interfere and compensate each other, the peak of 

relaxation time being limited only by impurities (parameter D0). In 2D model, this maximum is 

limited also by the effects of interaction between the molecular chains.  

Let us define the transport integrals Rn:  
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where we have introduced a dimensionless variable for the wave vector aky . 

The electrical conductivity σ and the thermopower S along the chains are expressed through 

transport integrals in the form 

,0R  01 / eTRRS        (16) 

 

Unfortunately, the transport integrals Rn can be calculated only numerically. 

 

4. Results and discussion 

 

In this part of paper, we present the 

results of numerical calculations for electrical 

conductivity   and Seebeck coefficient S along 

chains, for different values of parameter D0. Also 

the 2D model will be compared with the 1D 

model. The parameters of TTT2I3 crystal are:  

M = 6.5∙10
5
me (where me is free electron mass),  

a = 18.46Å, b = 4.97Å, c = 18.35Å,  

vs1 = 1.5∙10
3
 m/s, w1 = 0.16 eV, 26.0'

1 w eVÅ
-1

, 

r = 4, [11]. It is known from experiments that the 

conductivity in the transversal direction is by 

three orders of magnitude smaller than in the 

longitudinal direction, σx/σy ~ 10
3
. This result is 

used to estimate the parameters  
3

2 1044.1 w eV and '

1

'

2 009.0 ww   [12]. So as 

the transfer energy for a carrier between 

molecular chains w2 takes a very small value, the transport mechanism in the transversal direction 

is of hopping type. For the polarizability of the TTT molecule, we took 480  Å [12]. This 

value corresponds to the parameters 8.11   and 25.647.3/ 1

'

2

5'

1

5

12   wbwa . 

Fig.1. Electrical conductivity  as function of 

carriers concentration for some values of D0. 
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Figure 1 shows the dependence of electrical 

conductivity on carrier concentration for crystals 

with different degrees of purity. The results for 

1D model and 2D model are denoted by dashed 

and dotted lines, respectively. For stoichiometric 

crystals, the Fermi level is located at kx = π/4b in 

the Brillouin zone and the corresponding 

concentration n ≈ 1.2∙10
21

cm
-3

. The electrical 

conductivity for this concentration is:  

σ(1D) = 19∙10
3 

Ω
-1

cm
-1

, σ(2D) = 18∙10
3 

Ω
-1

cm
-1

, 

for D0 = 0.04; σ(1D) = 9.3∙10
3 

Ω
-1

cm
-1

,  

σ(2D) = 9.1∙10
3           

Ω
-1

cm
-1

 for D0 =  0.1 and 

σ(2D) = σ(1D) = 5.2∙10
3       

Ω
-1

cm
-1

 for D0 = 0.2. 

The parameter D0 = 0.1 corresponds to TTT2I3 

crystals grown from gas phase in [13]. The decrease in conductivity after the maximum with a 

further increase in hole concentration is explained by the fact that, for these concentrations, the 

role in electrical conductivity is played by electrons and their concentration is diminished with 

the filling of conduction band with holes. It is also observed that the curves for 1D and 2D 

models nearly coincide for all concentrations, except a narrow interval near the maximum for  

D0 = 0.04. For less concentration we are interested, the 1D model describes well enough the 

electrical conductivity. 

It is evident that, for small degrees of purity of crystals, 1D and 2D models give almost 

the same results over the entire range of concentrations. For purer crystals with D0 < 0.04 and 

electrical conductivity higher than 2.5∙10
4 

Ω
-1

cm
-1

, it is necessary to take into account the effect 

of the interaction between molecular chains, because this effect will give a significant 

contribution.  

Figure 2 shows the dependences of thermopower (Seebeck coefficient) S on carrier 

concentration at room temperature for different impurity parameters D0. For stoichiometric 

crystals  

(n = 1.2∙10
21

 cm
-3

) we obtained the following theoretical values for the thermopower:  

S(1D) = 55 μV/K and S(2D) = 54 μV/K for D0 = 0.2; S(1D) = 59 μV/K and S(2D) = 57 μV/K for 

D0 = 0.1; S(1D) = 65 μV/K and S(2D) = 64 μV/K for D0 = 0.04.  

These values are in the range of those obtained experimentally in [14, 15]. It can be seen 

that, for p region, Seebeck coefficient can take quite large values, especially for crystals with 

high purity. In addition, it is evident that, for stoechiometric concentration, the differences 

between 1D and 2D model are negligible. This means that the height of relaxation time maximum 

has a lower effect on S than on σ. It is expected that the differences between 1D and 2D models 

for S will be less pronounced than for σ even in crystals with higher degree of purity.  

 

5. Conclusions 

 

TTT2I3 crystals are very promising materials for thermoelectric applications. Initial 

calculations of transport parameters of these crystals were performed in terms of a 1D model, 

where the interaction between molecular chains was neglected. This paper presents the results of 

numerical calculations for electrical conductivity σ and Seebeck coefficient S along chains in the 

case where this interaction is taken into account. A spatial crystalline structure is modeled as two-

dimensional layers packaged into a 3D crystal. The transport is described in tight binding 

Fig.2. Seebeck coefficient, S as function of 

carriers concentration for some values of D0. 
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electrons and the nearest neighbor approximations. Two electron-phonon interaction mechanisms 

are considered: one of polaron type and the other of deformation potential type. Scattering on 

impurities is also taken into account and described by dimensionless parameter D0. It is 

demonstrated that the 1D model can be applied for large degrees of crystal purity that were 

previously achieved in experiments. For the crystals with higher purity and electrical conductivity 

higher than ~ 2.5∙10
4 

Ω
-1

cm
-1

, the interchain interaction must be taken into account. 
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