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Abstract 

 

The Peierls structural transition in quasi-one-dimensional (Q1D) TTF-TCNQ organic 

crystals of is studied in the 3D approximation. Two the most important electronphonon 

interactions are considered. The analytic expression for the phonon polarization operator is 

obtained in the random phase approximation. The polarization operator as a function of 

temperature is determined for different values of dimensionless Fermi momentum kF. Different 

cases are analyzed: kF = 0.59/2 and where the carrier concentration varies and kF = 0.59/2 ± δ, 

where δ represents the variation of Fermi momentum kF. In all cases, Peierls critical temperature 

Tp is determined.  

 

Introduction 

 

Organic materials represent an important research direction, because it is assumed that 

they may have much better properties than inorganic materials known so far. The most 

extensively studied Q1D organic crystals include those of the tetrathiofulvalinium 

tetracyanoquinodimethane (TTF-TCNQ) type. For a complete description of the crystal model, it 

is necessary to determine the parameters of these crystals. In this paper, we propose to use the 

Peierls structural transition for this aim. According to this phenomenon, which has been 

theoretically predicted by Rudolf Peierls, at some lowered temperatures, the one-dimensional 

metallic crystal has to pass in a dielectric state. This temperature is referred to as Peierls critical 

temperature Tp. The Peierls transition has been studied by many authors (see [13] and references 

therein). 

In previous papers [4, 5], the 1D physical model of the TTF-TCNQ crystals has been 

investigated. The renormalized phonon spectrum has been calculated for different temperatures in 

two cases: where the conduction band is half filled and the Fermi dimensionless quasi momentum 

kF = /2 and where the concentration of conduction electrons is reduced and the band is filled up 

to a quarter of the Brillouin zone, kF = /4, [5]. The Peierls critical temperature was established 

in the both cases. 

The 2D physical model for the same crystals has been investigated in [68]. The 

polarization operator as a function of temperature was numerically calculated for different values 

of parameters d and δ, where d is the ratio of the electron transfer energy in the transversal 

direction to conductive chains to the transfer energy along the conductive chains and δ represents 

the increase in Fermi momentum kF determined by an increase in the carrier concentration. In all 

cases, the transition temperature has been determined. 

In [9], a 3D physical model of the crystal has been studied. The structural transition has 
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been investigated in the case where the conduction band is filled up to a quarter of the Brillouin 

zone and the dimensionless Fermi momentum kF = /4 and in the case where the carrier 

concentration varies and kF = /4 ± δ, where δ represents the variation in Fermi momentum kF. 

The critical temperature transition has been determined. 

In this paper, we also investigate the 3D physical model of the crystal, but in a more 

realistic aspect. Computer modeling is performed and the Peierls transition is investigated for the 

case where the dimensionless Fermi momentum is kF = 0.59/2 for different values of parameters 

d1 and d2 which represents the ratio of the transfer energy in the transversal y and z directions to 

the transfer energy along the x direction of conductive chains. Note that this value of kF is 

estimated for real crystals of TTF-TCNQ. The polarization operator as a function of temperature 

is also calculated for different values of increase or decrease δ in Fermi momentum kF determined 

by an increase or decrease in the carrier concentration. For a complete description, two electron-

phonon interactions are considered. The first is of deformation potential type and the second one 

is similar to that of the polaron. The analytic expression for the phonon polarization operator is 

obtained in the random phase approximation. Peierls critical temperature Tp is determined for 

different values of dimensionless Fermi momentum kF ± δ. The results obtained in the 3D 

physical model are analyzed and commented in detail. 

 

1. Three-dimensional crystal model 

 

The compound of TTF-TCNQ forms quasi-one-dimensional organic crystals composed of 

TCNQ and TTF linear segregated chains. The TCNQ molecules are strong acceptors, and the 

TTF molecules are donors. The conductivity of TTF chains is much lower than that of TCNQ 

chains, and can be neglected in the first approximation. Thus, in this approximation, the crystal is 

composed of strictly one-dimensional chains of TCNQ that are packed in a three-dimensional 

crystal structure. The crystal lattice constants are a = 12.30 Å, b = 3.82 Å, c = 18.47 Å, b is in the 

chains directions. 

The Hamiltonian of the crystal was described in [6, 8] for the 2D physical model. Now it 

has the form: 

( ) ( , ) ( )

,

H a a b b A a a b b    
      

k k qq q q q qk k k k qqk k q

,                           (1) 

 

In expression (1), ( ) k represents the energy of a conduction electron with 3D quasi-wave vector 

k and projections (kx, ky, kz). 

  1 2 3
2 c o s ( ) 2 c o s ( ) 2 c o s ( )w k b w k a w k czx y   k ,                                        (2) 

where w1, w2 and w3 are the transfer energies of a carrier from one molecule to another along the 

chain (with lattice constant b, x direction) and in a perpendicular direction (with lattice constant a 

in y direction and c in z direction). In (1) ak
+
, ak are the creation and annihilation operators of a 

conduction electron. 

The second term in Eq. (1) is the energy of longitudinal acoustic phonons with three-

dimensional wave vector q and  projections (qx, qy, qz) and with frequency ωq: 

2 2 2 2 2 2 2

1 2 3
s i n ( / 2 ) s i n ( / 2 ) s i n ( / 2 ) ,

q x y z
q b q a q c                                    (3) 

where ω1, ω2 and ω3 are the limit frequencies in the x, y and z directions. In (1) bq
+
, bq are the 
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creation and annihilation operators of an acoustic phonon.  

The third term in Eq. (1) describes the electron-phonon interaction. It contains two 

important mechanisms. The first one is of the deformation potential type; it is determined by the 

fluctuations of energy transfer w1, w2 and w3, due to the intermolecular vibrations (acoustic 

phonons). The coupling constants are proportional to derivatives 
1

w  , 
2

w  , and 
3

w   of w1, w2, and 

w3 with respect to intermolecular distances, 0
1
w , 0

2
w , 

3
0w  . The second mechanism is 

similar to that of polaron. 
 

The square module of matrix element of electronphonon interaction is represented in the 

following form: 

 
2 2 2

1 1
( , ) 2 / ( ) { [ s i n ( ) s i n ( , ) s i n ( ) ]A N M w k b k q b q bx x x x      k q q

                     
(4) 

2 2 2 2

2 2 3 3
[ s i n ( ) s i n ( , ) s i n ( ) ] [ s i n ( ) s i n ( , ) s i n ( ) ] } ,w k a k q a q a w k c k q c q cz z z zy y y y           

 

In Eq. (4), M  is the mass of the molecule, N  is the number of molecules in the basic region of 

the crystal; parameters γ1, γ2, and γ3 describe the ratio of amplitudes of polaron-type interaction to 

the deformation potential one in the x, y and z directions: 

 
2 5 2 5 2 5

1 0 1 2 0 2 3 0 3
γ 2 α / ; 2 / ; 2 / ,e b w e a w e c w                                        (5) 

 

The analytic expression for the phonon polarization operator is obtained in the random 

phase approximation. The real part of the polarization operator is presented in the form: 

 

 

2
R e ( , ) ( , ) ,

3 ( ) ( )2

N
n n

d k d k d k Azx y

q

  

     




       
     

k k q
q k q

k k q
          (6) 

Here, N is the number of elementary cells in the basic region of the crystal, N = r N , where r is 

the number of molecules in the elementary cell, r = 2. In (6) A(k,-q) is the matrix element of 

electronphonon interaction presented in Eq. (2), ε(k)  is the carrier energy, ħ is the Planck 

constant, n
k

 is the Fermi distribution function, and Ω(q) is the renormalized phonon frequency. 

The critical temperature of Peierls transition is determined from the condition that the 

renormalized phonon frequency Ω(q) is diminished to zero at this temperature, i.e. Ω(q) = 0. It 

means that 

          1 R e ( , ) 0 .   q            (7) 

where R e ( , ) q  was represented in Eq. (6). 

 

2. Results and discussion 

 

Expression (7) shows that the critical temperature of Peierls transition is determined when 

Ω = 0, and qx = 2kF, qy = 2kF, qz = 2kF. The polarization operator as a function of temperature was 

calculated for different values of parameters d1 and d2, where     

d1 = w2/ w1 = 
2

w  /
1

w  , and d2 = w3/w1 = 
3

w  /
1

w  . The polarization operator as a function of 

temperature was determined for different values of kF. Different cases when  
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kF = 0.59/2 and when kF = 0.59/2 ± δ 

were analyzed. 

Numerical modeling was performed 

for the following parameters: M = 

3.74·10
5
me (me is the electron rest mass), 

w1= 0.125 eV, 
1

w   = 0.22 eVÅ
-1

, a = 12.30 

Å, b = 3.82 Å, c = 18.47 Å. The sound 

velocity at low temperatures is vs1 = 3.4 ·10
5
 

cm/s along chains, vs2 = 5.25·10
5
 cm/s in a 

direction and vs3 = 5.25·10
5
 cm/s in c 

direction [10]. γ1 = 1.6, γ2 and γ3 are 

determined from the relations: γ2 = 

32γ1b
5
/(a

5
d1) and γ3 = 32γ1b

5
/(c

5
d2). 

Figures 14 show the calculation 

results (the polarization operator is denoted 

by Polar). From all figures, one can 

determine the transition temperatures from 

the intersections of the calculated curves 

with the horizontal line at 1.0. 

Figures 1 and 2 shows the 

calculations for d1 = 0.015 and d2 = 0.01 and 

different values of the dimensionless Fermi 

momentum kF. The solid, dashed, dotted, 

and dash-dotted lines correspond to δ = 0 (kF 

= 0.59/2), δ = 0.031 (~ 3.35 % variation of 

kF), δ = 0.063 (~ 6.8% variation of kF), and     

δ = 0.094 (~10.15% variation of kF), 

respectively. Figure 1 shows the case where 

the Fermi momentum increase with δ, so  

kF = 0.59/2 + δ. It is evident that Tp 

decreases with an increase in parameter δ. 

For δ = 0, Tp  59 K; for δ = 0.031, Tp  43 

K; for δ = 0.063, Tp  26 K and for δ = 0.094 

Peierls transition does not take place.  

Figure 2 shows the case where the 

Fermi momentum decrease with δ and kF = 

0.59/2 - δ. In this case, for δ = 0, Tp  59K; 

for δ = 0.031, Tp  75 K; for δ = 0.063, Tp  

93 K and for δ = 0.094, Tp  114 K. It is 

observed that the Peierls critical temperature 

considerably increases with decreasing 

carrier concentration. 

 Figure 3 shows the case where  

kF = 0.59/2, d2 = 0.01 and d1 takes different 

values. The solid, dashed, dotted, and dash-

dotted lines correspond to d1 = 0.015, 0.025, 

Fig. 1. Polarization operator as a function of 

temperature for different values of δ and  

d1 = 0.015; d2 = 0.01; kF = 0.59/2+ δ. 

 

Fig. 2. Polarization operator as a function of 

temperature for different values of δ and  

d1 = 0.015; d2 = 0.01; kF = 0.59/2- δ. 

 

Fig. 3. Polarization operator as a function of 

temperature for different values of d1 and  

d2 = 0.01 and kF = 0.59/2. 
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0.035, and 0.045, respectively. The value  

d1 = 0.015 is estimated for real crystals of TTF-TCNQ. 

This graph shows that Tp strongly decreases with increasing parameter d1,. For d1 = 0.015,          

Tp  59 K, as it was obtained experimentally. 

For d1 = 0.025, Tp  50 K; for d1 = 0.035,  

Tp  30 K; and for d1 = 0.045, the Peierls 

transition disappears.  

Figure 4 corresponds to the case where  

kF = 0.59/2 and parameters d1 and d2 vary. In 

this graph the solid, dashed, dotted, and dash-

dotted lines correspond to d1 = 0.015, 0.025, 

0.035, and 0.045 and d2 = 0.01, 0.013, 0.015, 

and 0.017, respectively. In this case, Tp 

decreases faster. For d1 = 0.015 and d2 = 0.01, 

Tp  59 K; for d1 = 0.025 and d2 = 0.013, Tp  

46 K. In the other two cases, i.e., for d1 = 0.035, 

d2 = 0.015 and d1 = 0.045, d2 = 0.017, the 

Peierls transition will not take place. 

From Figs. 3 and 4, one can observe 

that even a small increase in three-dimensionality leads to a considerable decrease in the 

transition temperature. This feature is attributed to the fact that the Peierls structural transition is 

characteristic of crystals with pronounced quasi-one-dimensional properties. 

 

4. Conclusions 

 

The Peierls transition has been studied in quasi-one-dimensional organic crystals of the 

TTF-TCNQ type in the 3D approximation. The polarization operator as a function of temperature 

has been calculated in the random phase approximation for different values of parameters d1 and 

d2, where d1 and d2 are the ratio of the transfer energy in the transversal y and z directions to the 

transfer energy along the x direction of conductive chains. For a more complete description of the 

crystal model, two the most important electronphonon interactions were considered. The first is 

of the deformation potential type and the second one is similar to that of a polaron. The amplitude 

ratios between the second and first interactions are characterized by parameters γ1, γ2, and γ3, 

respectively. Peierls transition temperature Tp has been determined. In this paper, the behavior of 

Peierls structural transition where the carrier concentration varies has been studied. We have 

investigated the cases where the dimensionless Fermi momentum kF = 0.59/2 and  

kF = 0.59/2  δ, where δ represents the variation in the Fermi momentum determined by a 

variation in carrier concentration n. It has been established that, with an increase in carrier 

concentration, the Tp value decreases and vice versa. 

In addition, it has been shown that, with an increase in three-dimensionality, the transition 

temperature considerably decreases, and for some values of parameters d1 and d2 the Peierls 

structural transition will not occur. This feature is attributed to the fact that the Peierls structural 

transition is characteristic only of crystals with pronounced quasi-one-dimensional properties.  
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