
60              Microprocessor verification by syntactically-controlled generation of the test programs  
 

 
MICROPROCESSOR VERIFICATION BY SYNTACTICALLY-

CONTROLLED GENERATION OF THE TEST PROGRAMS 
 

G. Bodean, PhD, assoc.prof.  
Technical University of Moldova 

 
 

INTRODUCTION 
 

Random (stochastic) test generation is an 
actual up-to-date direction and efficient technique 
for simulation-based verification of large complex 
hardware (digital) designs such as microprocessors 
[1,…, 9]. From one hand, there exist sophisticated 
verification tools for generation, including 
controlled, random tests, which are used for 
functional verification of processors [10, 11, 12]. 
From the other hand, it is proposed to add specific 
language constructs to HDL to keep the 
randomization features [13, 14]. 

An important issue is the evaluation of the 
effectiveness of random test verification methods. A 
variety of coverage metrics have been proposed: the 
branch coverage and path coverage [15, 16] models 
used in software testing [17], finite state machine 
based metrics [18,…, 21], an observability metric 
[22, 23], and design-specific metrics such as 
architectural events [1, 24]. 

The predecessors paid more attention to 
development of the tools that help the user to 
control the process of test programs (TP) 
generation. Till now the generalized model of 
estimation of the test programs quality is not yet 
developed. Our objective is to make an advance in 
developing the estimation of quality and the 
controlled synthesis of the test program generator 
(TPG). 

In this paper it is proposed the approach, 
called syntactic (keeping tradition in [25]), where 
the structure of stochastic grammar defines the 
controlled languages constructs for weighted 
random test generation. The structure of grammar is 
“restored” from the microprocessor (MP) 
specification just from the instructions set 
specification and the interface protocol description. 

Here it is used the existing HDL languages 
(namely VHDL) features for implementation of the 
proposed methodology. In the next section of the 
paper the mathematical model for quality evaluation 
of the controlled random test generation is 
proposed. Then, in section 2, briefly is presented the 
unit under verification, and in sections 3, 4, and 5 is 
presented the methodology of synthesis of the 
(stochastic) grammar generator for simulation-based 

verification of a simple microprocessor. In Section 
6 the results of microprocessor test benches 
simulation are presented and analyzed. The paper 
ends with some concluding remarks and ideas about 
future development of controlled random testing for 
verification. 

1. THE LENGTH OF RANDOM TEST 
VERIFICATION 

To compute the test length we take into 
account the tools (simulation coverage Report) of 
evaluation of the simulation coverage measure in a 
widely used CAD-system such as Quartus II from 
Altera. This “estimation” is based on computation 
of percentage of exercise (flip-flopping) of the 
design’s nodes, more exactly, is checked as the ratio 
of output ports actually toggling between 1 and 0 
during simulation, compared to the total number of 
output ports presented in the netlist. 

Let us pe is the probability of exercising of 
node e on feeding of a test pattern to inputs of unit 
under verification (UUV). So, the probability Pe(l) 
of exercising of node e on feeding l test pattern is 
equal to  

Pe (l)= 1- (1- pe)l, (1) 

where e∈E, E is the netlist of design. 
For the small values of pe results the 

inequality: 

1- (1- pe)l ≥ 1- exp( -l⋅ pe) (2) 

Accepting λ as the level of confidence (vs 
risc) of the random test verification of length l, i.e. 
Pe(l)= λ, from (1) and (2) is follows: 

λ−
≤

1
1ln1

ep
l . (3) 

For computation l the level of confidence λ 
and the probability pe must be known before. For 
example, if the values of λ are equal to 0.632; 
0.865; 0,95; 0,982 etc., then values of random test 
length are: l = 1/pe; 2/pe; 3/pe; 4/pe etc.  

It is easy to prove that the formula (3) is valid 
also if the path coverage metric is used. The value 
(3) is an apriori estimation of the verification test 



Microprocessor verification by syntactically-controlled generation of the test programs                61
 
length l and is well correlated with experimental 
data presented in referenced bibliography.  

Thus, we obtain a theoretical model of 
estimation random test verification quality. But, any 
theoretical model must be approved practically. In 
the further sections of the paper we develop the 
syntactic model of random generator for 
microprocessor verification. Some verification 
experiments will be performed and the resulted test 
length will be compared with expected one. 

2. BRIEF PRESENTATION OF UNIT 
UNDER VERIFICATION 

The considered unit under verification is a 4-
bit microprocessor slice AM2901. Its full VHDL 
description is available from [26]. Figure 1 depicts 
the AM2901 microprocessor as a gray-box. Slice-
MP contains the following functional units: two-
address RAM array RAM_Regs, the one-word shift 
register Q_Reg, the source operand multiplexer 
Src_op, the arithmetic logic unit ALU that performs 
three arithmetic operations and five logic functions 
of two 4-bit operands, the output multiplexer 
Out_Mux. The a and b 4-bit addresses are used to 
address the RAM_Regs 16-word register file, where 
size of the word is equal 4 bit. 

Signal d is a direct input to the r source 
operand multiplexer. Signal q represents the 
contents of Q_Reg and feeds the s to source 
operand multiplexer. The ALU has carry-in cin, 
carry-out cout and other additional signals. 

The function of MP-slice is defined by a 9-bit 
microinstruction i. Three bits i[2:0] define the 
source operands, i[5:3] – ALU function, and i[8:6] – 
ALU destination. 

Thus, the stimuli are the signals and 
instructions with predefined structure (syntax). This 

property is common for all microprocessors. So, 
further analysis can be extended to general case. 

3. PROPOSED TECHNIQUE  

In the study case there is no limitations on the 
syntax of generated test sequences. But the 
instructions must be arranged under a certain rule. 
The objective of test generation process is the 
synthesis of test (micro)programs with a specific 
syntax. From this point of view some instructions 
load the data in the memory’s elements, others - 
process or/and unload the data from them.  

Thus, the rule of composition of the test 
program structure can be formulated by the next 
paradigm:  

“data load → inherently data process → 
unload (and analysis) of results”. (4) 

The rule (4) expresses the semantic aspect of 
the objective of random test programs generation. In 
the other words, rule (4) reflects the stochastic 
generation process of test programs with data 
dependency and can be accepted as a link between 
functional (behavioral) model of the MP [31] and 
rules of construction of TPG, proposed in [29]. 

More sophisticated type of dependences can 
be introduced: primary, data, instructional, and 
functional. Primary (structural) dependence defines 
the syntax of instructions. Data dependence appears 
when is needed to set up the transition of data 
between the instructions. There are 3 types of data 
dependences: read after write, write after read, and 
write after write. Data dependence frequently 
occurs in pipeline design. Instructional dependence 
defines the link between MP specific instructions, 
e.g. push-pop, loop-exit, call-return, etc. Functional 
(behavioral) dependence is established by an 
experienced designer on basis of his knowledge of 
behavior of the design entities (modules). 

To provide the condition (4) let us represent 
the component parts of instruction, i.e. ALU 
functions and operands, by a graphical images 
(pictograms). The pictogram of component consists 
of terminal and internal nodes that represent the 
elements of memory (registers) and ALU functions 
(symbol ∗). There are 8 ALU source+function 
pictograms: s0..s7, and 8 destination pictograms: 
d0..d7 (see Tables 6-1, 6-2 and 6-3 in [26]). The 
arcs mean transition of data. The zigzag-arc means 
selection of the RAM word.  

The pictograms are connected (“glued”) by 
suitable terminal nodes (like in puzzle-game). The 
gluing of pictograms is performed in the following 
way: source with destination creates an instruction Figure 1.  AM2901 block diagram. 

i[8:6] 

y[3:0] 

RAM_Regs 
a[3:0] 
b[3:0] 

Src_op 
r s 

d[3:0] 

ALU 

Out_Mux oe 

cin cout

i[5:3] 

i[2:0] 

i[8:6] 
Q_Reg 

f_0

i[8:0] 

qs0 qs3

q[3:0] 

f[3:0] 



62              Microprocessor verification by syntactically-controlled generation of the test programs  
 
structure (word in the sentence), and resulted 
structure is connected with another instruction 

structure, thus “building” a sentence, i.e. test 
program. This process can be executed recursively. 
All connections are performed according rule (4). 
Some typical pictograms and a fragment of glued 
pictogram are shown in figure 2. The node RNG in 
figure 2, c) means a random number generator. 

Introduced pictograms can be used prototype 
for wizard tools of automation of synthesis of the 
test program stochastic generator. This illustrative 
representation of the structure (syntax) of generated 
sequences is an intermediary step for jump to 
formal synthesis of generation grammar of the 
random test programs. 

4. SYNTHESIS OF THE TEST 
PROGRAM GENERATOR 

The technique of synthesis of the syntax test 
generator, inclusively generation of random test 
cases, is well known for compiler testing [27,28]. 
The test cases generator is controlled by 
programming language syntactic diagram (SD). 
And the SD is needed for a MP to generate the 
syntactic correct test programs. But the MP 
specification doesn’t have such SD. Many efforts 
must be made to construct (synthesis) a 
syntactically (and, may be, semantically) correct 
model of the random TPG [29]. But in our study 
case the MP is a simple one. Accepting the rule (4) 
and assuming the degree=2 for data dependence it 
was synthesized the random syntactic tree, shown in 
figure 3. 

In the figure 3 callout !(..) mean equiprobable 
generation of item and the non marked fan-out 
branches  have uniform probabilities. 

A stochastic grammar can be associated with 
this tree. A grammar is defined by a 4-tuple G=(VN, 
VT, R, S) where VN and VT are nonempty sets of 
terminal and nonterminal symbols, respectively. 
The symbol S, S∈VN  is called the starting symbol 
and V=. VN ∪VT is the vocabulary of G. The finite 
nonempty set R of (V∗VNV∗)×V∗ is called production 
rules. In a stochastic grammar Gs with each 
production αi→βij is associated a probability pij, 
where α and β are strings of symbols over the 

vocabulary, 0< pij ≤ 1, 1≤ i ≤ k, 1≤ j ≤ mi, 1
1

=∑
=

im

j
ijp . 

For the study case we have the next stochastic 
grammar GSt: 

VN = {S, A, B, C, D, E, F, H, Z} 
VT = {s0,…,s7, d0,…,d7, 0,…,7} 
S = S 
R = { 7'0'3 sdS SAp⎯⎯ →⎯ , BOCS SBp⎯⎯ →⎯ , 

07/1 sB ⎯⎯→⎯ , 17/1 sB ⎯⎯→⎯ , …, 67/1 sB ⎯⎯→⎯ , 
'0'8/1⎯⎯→⎯O , '1'8/1⎯⎯→⎯O ,…, '7'8/1⎯⎯→⎯O , 

DCdC CDp 0⎯⎯ →⎯ , FBC CFp⎯⎯ →⎯ , HSC CHp⎯⎯ →⎯ ,  
SdC CZp 1⎯⎯ →⎯ , OCsD 22/1⎯⎯→⎯ , OCsD 62/1⎯⎯→⎯ , 

24/1 dF ⎯⎯→⎯ , 34/1 dF ⎯⎯→⎯ , 54/1 dF ⎯⎯→⎯ , 
74/1 dF ⎯⎯→⎯ , 42/1 dH ⎯⎯→⎯ , 62/1 dH ⎯⎯→⎯ }. (4) 

The synthesis of TPG is reduced to definition 
of generator grammar production rules. The syntax 
of grammar (structure of TPG) can be synthesized 
(builded), for example, by the top-down recursive 

Figure 2. Pictograms of AM2901 μ-instructions: 
(a) source operand and ALU function, 

(b) ALU destination, and (c) example of 
“gluing” pictogram. 

A RAM 

RgA 
Q

BA 

RNG

F

OUT Q

A RAM

RgA 

B

RgB

D 0

B 
>> 

RAM 
Q

Q

>> 

F

OUT 

a) 

b) c)

s0 s7 

d4 

s1

d0 

pSB pSA

Figure 3. Probabilistic syntactic tree for 
generator of AM2901.

A

add d,#0

S

Src<= !(s0..s6),
Op<= !(0..7)

B 

S

pCZpCD pCF pCH 

C 

D

d0

s2 s6

E

F H Z

Op<= !(0..7) 

C

d2 d3 d5 d7 

B 

d4 d6

S

d1

S



Microprocessor verification by syntactically-controlled generation of the test programs                63
 
descent parsing method, analyzed in [29]. The 
syntax of grammar should guarantee that the 
derived TP would always be valid.  

The repartition of probabilities P (R) on rules 
of set R is called syntactic style [30]. In accordance 
with Chomsky classification the grammar GSt is of 
type 2, i.e. is noncontextual (context-free). The 
grammar GSt defines the structure of the random 
(weighted) test program generator for verification of 
the AM2901 slice-MP. In the HDL language, in 
particular VHDL, is needed to have the 
corresponding mechanism to produce a sentence in 
grammar GSt. Also note that some transition 
probabilities have the predefined values and another 
probabilities, such as pS(•) and  pC(•) , are undefined. 
The undefined probabilities will be defined later. 

5. WEIGHTED CASE STATEMENT 

The weighted case statement differ form the 
classical one by that in accordance with predefined 
repartition of probabilities the selector variable get a 
value from the sample of numbers. It is obvious that 
the existing linguistic tools can emulate such 
weighted case. To do this, initially is needed to 
generate the value of selector, then, after this, to 
jump on the corresponding variant. 

5.1. Model 

The model of weighted number generator is 
the probabilistic binary tree (P-tree). Figure 4 
depicts the binary tree of code of a 2-bit number and 
corresponding to it P-tree. The probability of an 
outcome is the product of the probabilities on the 
path from the root to the vertex. Starting from the 
known repartition of the probabilities on vertex 
(leafs) of the P-tree it is easy to restore the 

conditional probabilities on each tree’s branch. 
From the practical point of view it is more 

suitable to represent the P-tree by a weighted binary 
tree (W-tree). In this case the weighted choice of a 
bit value consists in performing of one VHDL-
statement: 

if Weight> LFSR then return(‘1’); else return(‘0’); (5) 

where LFSR is a state of the linear feedback shift 

register of size n, 0≤ Weight ≤ 2n-1 
 

5.2. Implementation 

The weighted generation of a number is 
based on recursive execution of statement (5). For 
example, if it is needed to equiprobable select of a 
number from 0 to 5, then the corresponding P-tree 
and W-tree will looks as it is shown in figure 5. 
Note that the arcs of W-tree in figure 5 (b) are 
labeled by the relative weights. 

On implementing the W-tree, each of its level 
is coded by a string of weights. Because each fan-
out node contains the complementary probabilities 
then the i-th string contains 2i weights, namely 
weight of the right branch, where i= 0,…,r-1, 

r=⎡log2N⎤, N is the maximum value of the number. 
The resulted record of strings is stored in the 
(RAM) array from where the weights are 
conditionally read. Thus, was described the 
(recursive) weighted number generator (WNG) unit, 
which diagram is shown in figure 6. 

The behavior of WNG-unit is the following. 
Let be the W-tree shown in figure 5, b) and size of 

b) a) 

Figure 4. Binary (a) and probabilistic (b) 
trees of the 2-bit number. 

1 1 

0 

0 

00 01 10 11 

1 

0 p(0/1) p(1/1)p(1/0) 

p(1)

p(0/0) 

p(0) 

p(00) p(01) p(10) p(11)

b)a)

Figure 5. P-tree (a) and W-tree (b) of 
equiprobable generation of 

numbers from 0 to 5.

0
1 1 
1 0 

11 
32 

11
54

1 1 
12 

2/3

1/2 1/2 1

1/3

1/2 1/2

0 1

1/2 1/2

0 1

1/2 1/2

0 1

Figure 6.  Block diagram of the weighted 
number generator. 

index

‘1’

PRec

W_Data

flick

clock

Addr RndBit
Weight 

Low 
nibble > 

LFSR 
ROM

A
C

FIFO RgShr

ADD 

W_Bit

High 
nibble

Rg



64              Microprocessor verification by syntactically-controlled generation of the test programs  
 
LFSR equal to n=10. So, the corresponding record 
of weights is: 

0: 341 
levels       1: 512, 0 

2: 512, 512, 512, 0 
which is written in the ROM as PRec=0, where 
PRec points to the base address of a record. 

Functioning of the WNG-unit starts with 
flicking the feeding value of the PRec, that is the 
high nibble(pointer to) of the record address. Also, 
the flick signal reset the shift registers RgShr and 
FIFO. The register RgShr indexes the string in the 
record: 0, 1, 3, 7 etc. The register FIFO indexes the 
relative address in the string. The sum of RgShr and 
FIFO contents form the low nibble of the weight 
absolute address in the record. 

On the clock rising edge the first weight 341 
is read from ROM. The comparator (>) applies the 
rule (5) and compares this weight with the LFSR 
state. The returned value of the W_Bit is stored in 
the FIFO. Next weight that can be read is 512 or 0. 
After r clocks of time FIFO will contains the 
resulted binary code W_Data of the number. This 
number will be the value of the case statement 
selector. The RndBit is a logic value, ‘0’ or ‘1’, 
generated with the probability 1/2. 

In such a way can be generated the number 
with an arbitrary distribution of the probabilities. 
The discrepancy between the expected distribution 
and the one resulted from W-tree model (or 
generated by WNG-unit) will depend on the 
measure scale, i.e. on the weight (the same LFSR) 

size (but this problem is the subject for another 
discussion). 

In our implementation we have designed the 
concurrent (one-shot) version of the WNG unit as 
well. Figure 7 depicts the scheme of the concurrent 
weighted number generator (CWGN), which 
implements a three-level W-tree. On the clock edge 
the weights w10,…, w33 are read from ROM and are 
compared with states of the general linear feedback 
shift register (GLFSR). GLFSR contains the shift 
register with n-bitwise cells [32]. Feedback 
performs the multiplication and addition operations 
over extended Galois field GF(2n). The GLFSR 
outputs are the uniform generated n-bitwise data 
RndWord as well as r-bitwise weighted random 
data W_Data. 

5.3. VHDL-description 

If one-shot WNG-unit is used then it is 
enough to feed the value of PRec and flick it. This 
operation can be performed in parallel with other 
statements of the selected case variant. So, state 
machine design of the test stochastic generator 
encoded in the VHDL language will be the 
following:  
process (clock, reset, W_Data) 
begin 
  if reset = '1' then  State <= S; 
  elsif rising_edge( clock) then 
    case State is 
      when S=>   
          clkAM2901<= '1'; -- generate clock of time for MP 
          flick<= '1'; 
        --equiprobable jump 
          if      RndBit='0'  then   State<= A;  
          else State<= B;  --if RndBit ='1'  
          end if; 
      when A=>   
          clkAM2901<= '0'; 
          flick<= '1'; 
          dst_cod<= ramf;  -- destination code 
          op_cod<= add; -- ALU function code 
          src_cod<= dz; -- source code 
          State<= S; 
      when B=>   
          clkAM2901<= '1'; 
          flick<= '0'; 
          PRec<= "000"; --set the pointer to !( 0..3) 
          State<= C; 
      when C=>   
          clkAM2901<= '0'; 
          flick<= '1'; 
       --weighted (equiprobable) case selection 
          if      W_Data ="000"  then State<= D; 
          elsif  W_Data ="001" then State<= G; 
          elsif  W_Data ="010" then State<= H; 
          else State<= Z; -- if  W_Data ="011" 
          end if; 
       ……………………. 
    end case; 
  end if; 
end process; 

Figure 7.  Block diagram of the 
concurrent WNG. 

w33 
w32 

w31 

w30 

w21 

w20 

w10 

> 

RndWord
GLFSR 

> 

> 

ROM 

MX 

0/1

W_Data 

LSB MSB



Microprocessor verification by syntactically-controlled generation of the test programs                65
 

In above listing is presented a fragment of the 
state machine description that implements the test 

program stochastic generator described by grammar 
GSt. 

6. TEST EXPERIMENTS AND RESULTS 

The efficiency of syntactic approach will be 
estimated in comparison with other methods of 
generation, namely, deterministic and pure random. 

In [26] is described an AM2901 deterministic 
test bench based on procedural approach. In the 
Quartus waveform editor we have created the 
verification test cases that must be generated by this 
test bench. We run the simulation. For 185 executed 
instructions the resulted simulation coverage was 
equal to 93,73%. 

Further, we have implemented a simple test 
bench scheme shown in figure 8. Three types of test 
experiments were performed where generators Gen1 
and Gen2 were counters, or maximum-length 
sequence generator, or syntactically controlled 
stochastic generator (Gen2). Note that the transition 
probabilities pS(•) and pC(•) in GSt were set up 
equiprobable. 

Test experiments were executed by 
increasing of simulation time (parameter End Time 
in the CAD Quartus) step-by-step. The obtained 
values of simulation coverage are plotted in the 
figure 9, where stochastic generator is the controlled 
test program generator which algorithm of 
functioning is defined by stochastic grammar GSt.  

The counter as Gen2 tries all possible states 
like the LFSR as Gen2. At the same time, 
comparing curve 4 with 3, 2 and 1 it is easy to state 
that the simulation coverage of the counter is worse 
then for the random testing. It can be stated also that 
the further improvement of verification quality by 
random stimulus can be achieved only by 
qualitative change of the random generator 
(compare curves 1 and 2 with 3). 

Also was established that the variation of 
transition probabilities pS(•) and pC(•) doesn’t give an 
essential improvement of the simulation coverage 
(see curves 1 and 2).  This is because the AM2901 
microprocessor has a simple architecture that is 
“insensible” to the stylistic of generated stimuli. 

Now, make the comparison of experimental 
results with the theoretical model. Assume that 
apriori probability pe in (3) is the relative frequency 
of “switching” on-off of the elements of memory, 
i.e. the registers. The AM2901 microprocessor has 
16+1=17 registers. So, the number of switching is 
twiced and is equal to 34. Then the probability pe of 
event of switching of the registers is equal to 1/34 ≈ 
0,029. In the graphic 1 (or 2), shown in figure 8, for 
test length l equal, for example, to 100, we obtain 
the value of confidence level λ equal to 0,93. Thus, 
in accordance with relation (3) the expected 
probability Pe(l) of exercising of the MP registers 
on feeding l instructions is approximately equal to 

 

 027,0
93,01

1ln
100

1
≈

−
.                   (5) 

 
Deviation of experimental test length from 

expected one constitutes about 6% that is the 
acceptable discrepancy between theoretical model 
and experimental results. 

In spite of achieved high level of exercising 
of the nodes of design netlist, some nodes remained 
unexercised. Therefore, for successful completion 
of design verification, the CAD-system should have 
the “ability” to summarize the list of nodes not yet 
exercised. 

CONCLUSIONS 

In this paper a syntactic approach to synthesis 
of stochastic program generator has been presented. 

Figure 8. Test bench scheme of AM2901. 

9 

4 
Gen1 

A
M

29
01

 a 
b 
d 
i 

 
y 

Gen2 

qs0 
qs3 

1

3

4

2

Figure 9. The AM2901 simulation coverage  
for instructions generated by: 
1, 2 – stochastic generator; 
3 – pure random generator; 
4 – counter generator.



66              Microprocessor verification by syntactically-controlled generation of the test programs  
 
Theoretical and design issues have been analyzed. 
Experimental results justify the elaborated 
theoretical model. The proposed design solutions 
and VHDL constructions are in accordance with the 
proposals suggested recently in [13]. 

Further improvement of the stochastic test 
program generator can be reached by tuning of the 
transition probabilities repartition of the grammar. 
In fact, if suppose that it is given an arbitrary 
probabilities repartition on events E then the 
relation (3) will be transformed to: 

 

{ } λ−
≅

∈
1

1ln
min

1

e
Ee

p
l .                     (6) 

 

So, the task of test quality improvement is 
reduced to increase of low bound of repartition. 
Introduction of the Markov chain can successfully 
solve this new problem (because it is known that a 
noncontextual stochastic grammar can be 
adequately represented by a Markov process). In 
this case the principle of maximization of the 
entropy of Markov process should be applied to 
increase the low bound of analyzed repartition, and, 
so, to decrease the length of test-verification 
programs. From the other hand, when TPG structure 
corresponds to a stochastic context-free grammar 
then the branching Markov process is needed for 
analysis of the style of generated sentences  (see 
birth and death processes). 

What is the attractive aspect of the syntactic 
approach? Firstly, probabilities provide the varieties 
of test programs. Secondly, greater effect of 
synthesis of an AGP can be achieved by automation 
of the procedure of definition of the generator 
grammar rules.  

The proposed tools facilitate the control of 
the process of the test programs stochastic 
generation and are ready for practical using in 
verification of microprocessors or complex systems 
on chips. These tools are good for synthesizable 
design as well as for (presynthesis) simulation 
design. 

Also it is obvious, that for successful of 
synthesis of test program generators it is necessary 
to supply the hardware description language with 
constructions which provide not only specification 
of structural features, but also the properties 
(attributes) of behavior of microprocessor 
instructions. 

Need to notice that the task of mapping of 
MP-structure to TPG-structure is not yet studied up 
to end. Therefore we hope that the proposed 
syntactic approach to construction of test program 
generators will accelerate the development of 

methods and tools of simulation-based verification 
of microprocessors. 

References 

1. Kantrowitz M., Noack L. M. I’m Done 
Simulating; Now What? Verification Coverage 
Analysis and Correctness Checking of the DECchip 
21164 Alpha microprocessor. Proc. Design 
Automation Conf., 1996, pp. 325–330. 
2. Walter J., Leenstra J., Dottling G., Leppla B., 
Munster H.-J., Kark K., Wile B. Hierarchical 
Random Simulation Approach for the Verification 
of S/390 CMOS Multiprocessors. – Proceedings of 
the 34th DAC, 1997, pp.89-94. 
3. Abts D., Roberts M.  Verifying Large Scale 
Multiprocessors Using an Abstract Verification 
Environment,  DAC 1999, pp.163-168. 
4. Khailany B., Dally W. J., Chang A., Kapasi U. 
J., Namkoong J., Towles B. VLSI Design and 
Verification of the Imagine Processor Proceedings 
of the 2002 International Conference on Computer 
Design, 2002, pp.289-294. 
5. Behm M., Ludden J., Lichtenstein Y., Rimon 
M., Vinov M. Industrial Experience with Test 
Generation Languages for Processor Verification 
DAC 2004, June 7–11, 2004, San Diego, California, 
USA.- 2004, pp.36-40. 
6. Wagner I., Bertacco V., Austin T.. Stress Test: 
An automatic approach to test generation via 
activity monitors. DAC, Proceedings of Design 
Automation Conference, 2005, pp.783-788. 
7. Bhaskar K.U., Prasanth M., Chandramouli G., 
Kamakoti V. A universal random test generator for 
functional verification of microprocessors and 
system-on-chip VLSI Design, 2005. 18th 
International Conference on Volume , Issue , 3-7 
Jan. 2005,  pp. 207 – 212. 
8. Henrique J.-P. Verification of 
STMicroelectronics Configurable Processor CDN 
Live EMEA June 2006. [Online]. Available: 
http://www.cdnuser.org 
9. Mallesham Boini, Complex SoC Verification 
Using and ARM Processor – Design Strategies and 
Methodologies, Information Quarterly , Volume 5, 
Number 4, 2006, pp. 62- 65. 

10. Poe E.A. Theory of Operation Basic and 
Advanced Random Test Generators  (2004). 
[Online]. Available: http:// 
www.obsidiansoft.com/files/operation.pdf 

11. Rosebrugh C. Using Vera and Constrained-
Random Verification to Improve Design Ware Core 
Quality – The Synopsys Verification Avenue 
Technical Bulletin, Vol. 4, issue 4, December 2004. 
(2004). [Online]. Available: http:// www.open-
vera.com/technical/ 



Microprocessor verification by syntactically-controlled generation of the test programs                67
 

12. [Online]. Available: http:// 
www.aldec.com/solutions/hdlverification/ 

13. Lewis J. Accellera VHDL-TC Extensions-SC 
Randomization (2007). [Online]. Available: http:// 
www.accelera.org/apps/group_public/download.ph
p/905/Randomization-V1.pdf 

14. Freitas A. Shadow model and coverage driven 
processor verification using SystemVerilog 
[Online]. Available: http://www.edatechforum.com 
/journal/june2007shadow.cfm/ 

15. Aharon A., Bar-David A., Dorfman B., 
Gofman E., Leibowitz M., and Schwartzburd V. 
Verification of the IBM RISC System/6000 by 
dynamic biased pseudo-random test program 
generator. IBM Systems Journal, 1991,pp. 527–538. 

16. Vemuri R. and Kalyanaraman R.. Generation 
of design verification tests from behavioral VHDL 
programs using path enumeration and constraint 
programming. IEEE Trans. on VLSI, 1995, pp. 
201–214. 

17. Beizer B., Software Testing Techniques, Second 
Ed., Van Nostrand Reinhold, 1990. – 550 P. 

18. Cheng K.-T. and Krishnakumar A. S., 
Automatic functional test bench generation using 
the extended finite state machine model, Design 
Automation Conference, 1993, pp. 1–6. 

19. Ho R. C., Yang C. H., Horowitz M. A., and 
Dill D. L., Architecture validation for processors, 
International Symposium on Computer 
Architecture, 1995,.pp. 404–413. 

20. Lee D. and Yannakakis M. Principles and 
methods of testing finite state machines - a survey, 
IEEE Transactions on Computers, vol. 84, pp. 
1090–1123, August 1996. 

21. Moundanos D., Abraham J. A., and Hoskote 
Y. V. Abstraction techniques for validation 
coverage analysis and test generation. IEEE Trans. 
Computers, vol. 47, no. 1, January 1998, pp. 2–14. 

22. Devadas S., Ghosh A., and Keutzer K. 
Observability-based code coverage metric for 
functional simulation. Proc. Int. Conf. Computer-
Aided Design, 1996, pp. 418–425. 

23. Fallah F., Devadas S., and Keutzer K.. 
OCCOM: Efficient computation of observability-
based code coverage metric for functional 
simulation. Proc. Design Automation Conf., 1998, 
pp. 152–157. 

24. Taylor S., Quinn M., Brown D., Dohm N., 
Hildebrandt S., Huggins J., and Ramey C.. 
Functional verification of a multiple-issue, out-of-
order, superscalar Alpha processor - the DEC 
Alpha 21264 microprocessor. Proc. Design 
Automation Conf., 1998, pp. 638–643. 

25. .Fu K.S. Syntactic pattern recognition and 
applications, Englewood Cliffs, NJ, Prentice Hall, 
1982. – 596 P. 

26. Skahill K. VHDL for Programmable Logic, 
Addison-Wesley Publ., 1996, - 594 P. 

27. Hanford K.V. Automatic generation of test 
cases, IBM Systems Journal, vol. 9, No.4, 1970, 
pp.242-257. 

28. Bird D.L. and Munoz C.U. Automatic 
generation of random self-checking test cases, IBM 
Systems Journal, vol. 22, No.3, 1983, pp.229-245. 

29. Wu L.-M., Wang K., and Chiu C.-Y. A BNF-
Based Automatic Test Program Generator for 
Compatible Microprocessor Verification, ACM 
Trans. on Design Automation of Electronic Systems, 
vol.9, No. 1, 2004, pp.105-132. 

30. Grenander U. Pattern Analysis, Vol. II, 
Springer Verlag, 1978. 

31. Thatte S.M., and Abraham J.A. Test 
generation for microprocessors. IEEE Trans. 
Comput. C-29, No. 6, 1980, pp.429–441. 

32. Pradhan D.K., Chatterjee M. GLFSR– a new 
test pattern generator for built-in-self-test. IEEE 
Trans. on Computer-Aided Design of Integrated 
Circuits and Systems, Vol. 18, No.2, 1999, pp. 238-
247. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Recommended for publication:  25.02.2011 


