Integration of individual TiO₂ nanotube on the chip: Nanodevice for hydrogen sensing Mihail Enachi^{*,1}, Oleg Lupan^{*,**,2}, Tudor Braniste¹, Andrei Sarua³, Lee Chow⁴, Yogendra K. Mishra², Dawit Gedamu², Rainer Adelung², and Ion Tiginyanu^{1,5} - ¹ National Center for Materials Study and Testing, Technical University of Moldova, 2004 Chisinau, Republic of Moldova - ² Functional Nanomaterials, Institute for Materials Science, Christian Albrechts University of Kiel, 24143 Kiel, Germany - ³ H.H. Wills Physics Laboratory, University of Bristol, BS8 1TL Bristol, UK - ⁴ Department of Physics, University of Central Florida, Orlando, FL 32816-2385, USA Received 28 December 2014, revised 19 February 2015, accepted 19 February 2015 Published online 25 February 2015 Keywords TiO2, nanotubes, hydrogen, gas sensors, anatase, rutile Titania (TiO₂) exists in several phases possessing different physical properties. In view of this fact, we report on three types of hydrogen sensors based on individual TiO₂ nanotubes (NTs) with three different structures consisting of amorphous, anatase or anatase/rutile mixed phases. Different phases of the NTs were produced by controlling the temperature of post-anodization thermal treatment. Integration of individual TiO₂ nanotubes on the chip was performed by employing metal deposition function in the focused ion beam (FIB/SEM) instrument. Gas response was studied for devices made from an as-grown individual nanotube with an amor- phous structure, as well as from thermally annealed individual nanotubes exhibiting anatase crystalline phase or anatase/rutile heterogeneous structure. Based on electrical measurements using two Pt complex contacts deposited on a single ${\rm TiO_2}$ nanotube, we show that an individual NT with an anatase/rutile crystal structure annealed at 650 °C has a higher gas response to hydrogen at room temperature than samples annealed at 450 °C and as-grown. The obtained results demonstrate that the structural properties of the ${\rm TiO_2}$ NTs make them a viable new gas sensing nanomaterial at room temperature. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim **1 Introduction** The high interest in titanium dioxide or titania has been stimulated for decades by a myriad of applications of this versatile material such as heterogeneous catalysis, photocatalysis, solar cells, chemical sensors, corrosion-protective coatings, biomedicine etc. [1–4]. Over the last few years, increased attention has been paid to the study of nanostructured TiO₂ layers and membranes fabricated by anodic oxidation of pure titanium foils [5]. Recently we observed, for example, that anodic oxidation of Ti foils at temperatures below 0 °C leads to the formation of closely packed TiO₂ nanotubes distributed in a two-dimensional quasi-ordered fashion [6]. These findings open up new perspectives to the applications of TiO₂ nanotublar structures in the design and fabrication of novel photonic elements [7]. Among other applications, increas- ing interest has also been devoted to gas sensing properties of titania. TiO₂ based gas sensors were made by various processes such as thermal evaporation of TiO₂ powder [8], electrochemical deposition [9], anodization of Ti sheets in water based solutions containing fluoride ions [10], or organic electrolytes [11], etc. Sensing properties of TiO₂ have been investigated in film sensors [9], dots or TiO₂ nanotubular arrays [10]. Hydrogen gas sensors on undoped TiO₂ [12] and doped TiO₂ nanostructures with different dopants such as Nb [13], Eu, Yb, Pt [14], C or mixture of TiO₂ and other nanocompounds such as SnO₂ were previously reported by different groups. Vertically aligned and ordered TiO₂ NT arrays have been investigated as hydrogen sensors due to their change of electrical resistance in the presence of hydrogen gas [10]. It is well known that the ⁵ Institute of Electronic Engineering and Nanotechnologies, Academy of Sciences of Moldova, 2028 Chisinau, Republic of Moldova ^{*} Corresponding authors: e-mail enachimihai@mail.utm.md, Phone: +373 22 509 920, Fax: +373 22 509 920; e-mail ollu@tf.uni-kiel.de ** On leave from Department of Microelectronics and Biomedical Engineering, Technical University of Moldova, 168 Stefan cel Mare Blvd., 2004 Chisinau, Republic of Moldova.