EQUIVALENT MODELS FOR STUDYING OHM'S LAW IN MONOPHASIC ALTERNATING CURRENT

Victor CARAGIU, Marinela BRÂNZEANU*, Daniel BRIȚCHI
Technical University of Moldova, Faculty of Computers, Informatics and Microelectronics, Department of Software Engineering and Automatics, FAF-191 group, Chişinău, Moldova
*Autorul corespondent: Brânzeanu Marinela, branzeanu.marinela@,isa.utm.md

Abstract

Ohm's law is well known from the school program. In this paper we analyze new studying methods of this law. We propose a software, which will allow graphical modeling of circuits for monophasic alternating current with specification of the number of components and their type.

Keywords: alternating current, Ohm's law, software, modeling.
We study the circuit shown in Figure 1, which consists of: resistors (R), inductors (L), capacitors (C), switch (k), voltmeter (V), ammeter (A) and a source of alternating current with a potentiometer (p) for tension adjustment.

Figure 1. Left: Reference circuit; Right: Software simulation.
We consider the circuit from Figure 1 left, in the time interval $d t$, where e and i are the instantaneous values of the electromotive voltage $d W=e * i * d t$. This energy is distributed in the circuit in the following way: heat dissipated by the resistor R: $d W_{1}=R * i^{2} * d t$; magnetic field stored in the inductor L: $d W_{2}=L * i * d i$; electric field stored in the capacitor $\mathrm{C}: d W_{3}=u * i *$ $d t=u * d q=u * C * d u$. We obtain the value of $d W=R * i^{2} * d t+L * i * d i+u * i * d t$, therefore we calculated the differential equation of the alternating current through a RLC type of circuit: $e=R * i+L * \frac{d i}{d t}+u$. Considering a sinusoidal electromotive voltage to the circuit's terminal $e=$ $E_{m} \sin \omega t$, where ω is the amplitude, we obtain the equation: $E_{m} \sin \omega t=R \cdot i+L \cdot \frac{d i}{d t}+u$. Deriving the formula, we get:

$$
\begin{equation*}
L \frac{d^{2} i}{d t^{2}}+R \cdot \frac{d i}{d t}+\frac{i}{C}=\omega E_{m} \cos \omega t \tag{1}
\end{equation*}
$$

Considering the phase shift φ and the equalities $d u=d q / C$ and $\frac{d q}{d t}=i$, we get the equation:

$$
\begin{equation*}
R \cos (\omega t-\varphi)-\left(\omega L-\frac{1}{\omega C}\right) \sin (\omega t-\varphi)=\frac{E_{m}}{I_{m}} \cos \omega t . \tag{2}
\end{equation*}
$$

Furthermore, we can consider $\omega t_{1}=\frac{\pi}{2}$ and $\omega t_{2}=2 \pi$, to get the formulas:

$$
\begin{equation*}
\tan \varphi=\frac{\omega L-\frac{1}{\omega C}}{R} \text { and } I_{m}=\frac{E_{m}}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}}=\frac{E_{m}}{Z} . \tag{3}
\end{equation*}
$$

This way we obtained the formula for the circuit's impedance $Z=\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}$.
This equation is modeled accordingly to the scheme represented in Figure 1 left. As a result, we verify the Ohm's law in alternating current. We propose ourselves the experimental realization of the scheme presented in the simulation in Figure 1 right.

References:

1. Series RLC Circuit Analysis [online], 2014, [visited on 02.03.2020], [available on https://www.electronics-tutorials.ws/accircuits/series-circuit.html/]
