
Conferinţa tehnico-ştiinţifică a studenţilor, masteranzilor şi doctoranzilor, 1-3 aprilie 2020, Chișinău, Republica Moldova

332

CONCURRENCY AND PARALLELISM,
BETWEEN PROGRAMMING AND REAL LIFE

Marius BÎTCĂ1*,

Darinela ANDRONOVICI1,
Dumitraș MĂMĂLIGĂ1

1Technical University of Moldova, Faculty of Computers, Informatics and Microelectronics,
Department of Software Engeneering and Automatics, group FAF-191, Chisinau, Moldova

*Corespondent author: Bîtcă Marius, bitca.marius@isa.utm.md

Abstract. Undergraduate or novice programmers are often challenged by higher-level and
abstract concepts in programming courses. Compared to constructing a sequential program,
parallel and concurrent programming requires a different and more complex mental model of
control flow. Now that multi-core processors have become the norm for computers and mobile
devices, the responsibility of developing software to take advantage of this extra computing power
now rests with the modern software developer.

Keywords: performance, programming, threads, sequential program, computer architecture.

Introduction
The aim of this article is to help the reader to understand what parallelism and concurrency

are, by bringing not only definitions and explanations, but also examples from real life, as it will
be clearer to understand. There are a lot of explanations, but only few of them can give you a good
perception about them, the rest are making you feel confused and then you give up on
understanding these two terms. You do not even know that you see concurrency and parallelism
not only when you are programming, but everywhere and every time.

Real life implementation
Imagine a person is working in a library and a new bunch of books arrived. His task is to

select the right ones, by author, and put them on the shelves. The way he will accomplish this task
is by following the right steps. From all the books, he will pick those written by the same author.
After bringing them to the corresponding place, he will arrange them on the shelves.

In order to make this process more efficient he can implement the parallelism technique,
by using two workers and make them work simultaneously. In this way he will reduce twice the
amount of time. Of course, if he wants to make this job more efficient, he can use more workers.
An important thing to know about parallelism is that sometimes you cannot obtain the expected
increase in performance, because you can reach a bottleneck, this happens when a resource (the
books) is busy and the second worker is unable to select the needed books, that is why you can
lose that same amount of time as if you work with one worker.

 Now if you want to optimize even better, you can use the concurrent approach.
So before jumping into this subject by defining what concurrency is, and since it is very easy to
confuse concurrent with parallel, we have to try to make the difference clear from the beginning:

- Parallelism is about doing a lot of things at the same time.
- Concurrency is about dealing with a lot of things at the same time.

Parallelism
Parallelism means executing multiple tasks on multiple hardware (cores, machines etc.),

that is why the tasks are running parallel and they are being executed as fast as possible. A parallel
computer is a computer or a system that uses elements of simultaneous processing in a cooperative

mailto:bitca.marius@isa.utm.md

Conferinţa tehnico-ştiinţifică a studenţilor, masteranzilor şi doctoranzilor, 1-3 aprilie 2020, Chișinău, Republica Moldova

333

manure for solving a computation problem. Parallel processing includes technics and technologies
that make the calculation in parallel to be possible.

The goal of parallelism is performance, because we just want to complete the task as fast
as possible, therefore the time spent is reduced twice or more and the amount of work per
individual is divided. In Figure 1 is an example from real life, where you can see the process of
transporting the books to the fireplace by two gophers at the same time.

Figure. 1. Example of parallelism

 The development of parallel computing has attracted important progress in the parallel
algorithms field, whose main feature is the ability to execute several computation operations
simultaneously. Initially, parallel computers could not be encountered other than in research
laboratories. These systems were used exclusively for scientific applications that required
intensive calculations.

Examples of this would be parallel programs intended for numerical simulation of complex
systems. However, today the development of parallel computers is mainly imposed by commercial
applications that are capable to handle and process large collections of data. Some of the areas
where these applications have found a wide applicability are: graphics and virtual reality, parallel
databases, expert diagnostic systems and decision support.

It can be stated without doubt that the directions of development of these two categories of
applications are approaching one common denominator since commercial applications companies
tend to make more and more complex calculation. One of the most common techniques of
parallelization is the division of a problem in several subproblems and solving them in parallel
with the help of processes and threads.

Concurrency
Concurrency is not a new idea. Much of the theoretical groundwork for concurrent

programming was laid in the 1960’s, and Algol 68 includes concurrent programming features.
Widespread interest in concurrency is a relatively recent phenomenon however; it stems in part
from the availability of low-cost multiprocessors and in part from the proliferation of graphical,
multimedia, and web-based applications, all of which are naturally represented by concurrent
threads of control

You have probably written multiple single-threaded programs before. A common pattern
in programming is having multiple functions that perform a specific task, but they do not get called
until a previous part of the program gets data ready for the next function.

This is how we will initially set up our first example, a program that mines ore. The
functions in this example perform: finding ore, mining ore, and smelting ore. For a single-threaded
application, the program would be designed as in Figure 2.

Conferinţa tehnico-ştiinţifică a studenţilor, masteranzilor şi doctoranzilor, 1-3 aprilie 2020, Chișinău, Republica Moldova

334

Figure. 2. Program that mines ore

This style of programming has the benefits of being easy to design, but what happens when

you want to take advantage of multiple threads and perform functions independent of each other?
This is where concurrent programming comes into play.

Figure. 3. Program that uses concurrent programming

Mining design, presented in Figure 3, is much more efficient. Now multiple threads

(gophers) are working independently; therefore, the whole operation is not all on Gary. There is a
gopher finding the ore, one mining the ore, and another smelting the ore – potentially all at the
same time.

Problems in concurrent programs
Solving a problem concurrently seems that it will reduce the computational time

immensely. However, everything comes at a price. Even though we think that doing many things
at once will speed things up, there is a cost due to the communication between threads and to make
sure that they won’t crash or make wrong outputs. Concurrent programming has to be done with
great care and it causes an unavoidable overhead to program.

Some operations in a concurrent program may fail to produce the desired effect if they are
performed by two or more processes simultaneously. The code that implements such operations
constitutes a critical region or critical section. If one process is in a critical region, all other
processes must be excluded until the first process has finished. When constructing any concurrent
program, it is essential for software developers to recognize where such mutual exclusion is needed
and to control it accordingly.

Usually, an external library will be used when writing concurrent programs. There will be
an overhead to load these libraries. Additionally, concurrent programming building blocks like
semaphores, mutexes, locks will be used and they will cost an initializing and finalizing time.

Conclusions
The two concepts are related, but different.
- Concurrency and Parallelism refer to computer architectures which focus on how our

tasks or computations are performed.
- In a single core environment, concurrency happens with tasks executing over same time

period via context switching, when the CPU changes from one task (or process) to
another while ensuring that the tasks do not conflict.

Conferinţa tehnico-ştiinţifică a studenţilor, masteranzilor şi doctoranzilor, 1-3 aprilie 2020, Chișinău, Republica Moldova

335

- In a multi-core environment, concurrency can be achieved via parallelism in which
multiple tasks are executed simultaneously.

As you can see, concurrency is related to how an application handles multiple tasks it works
on. An application may process one task at time (sequentially) or work on multiple tasks at the
same time (concurrently).

Parallelism on the other hand, is related to how an application handles each individual task.
An application may process the task serially from start to end, or split the task up into subtasks
which can be completed in parallel.

As you can see, an application can be concurrent, but not parallel. This means that it
processes more than one task at the same time, but the thread is only executing on one task at a
time. There is no parallel execution of tasks going in parallel threads / CPUs.

An application can also be parallel but not concurrent. This means that the application only
works on one task at a time, and this task is broken down into subtasks which can be processed in
parallel. However, each task (+ subtask) is completed before the next task is split up and executed
in parallel. Additionally, an application can be neither concurrent nor parallel. This means that it
works on only one task at a time, and the task is never broken down into subtasks for parallel
execution.

Finally, an application can also be both concurrent and parallel, in that it both works on
multiple tasks at the same time, and also breaks each task down into subtasks for parallel execution.
However, some of the benefits of concurrency and parallelism may be lost in this scenario, as the
CPUs in the computer are already kept reasonably busy with either concurrency or parallelism
alone. Combining it may lead to only a small performance gain or even performance loss. Make
sure you analyse and measure before you adopt a concurrent parallel model blindly.

References:

1. FORREY, T., Learning Go’s Concurrency Trough Illustration[online] [accessed
10.02.2020]
Available: https://medium.com/@trevor4e/learning-gos-concurrency-through-
illustrations-8c4aff603b3

2. ABHISEK, G., Concurrency, Parallelism, Threads, Processes, Async and Sync –
Related? [online] [accessed 13.02.2020] Available: https://medium.com/swift-
india/concurrency-parallelism-threads-processes-async-and-sync-related-39fd951bc61d

4. JENKOV, J., Concurrency vs. Parallelism [online] [accessed 17.02.2020] Available:
http://tutorials.jenkov.com/java-concurrency/concurrency-vs-parallelism.html

5. PIKE, R., Summary of Concurrency Is Not Parallelism, a talk by Rob Pike [online]
[accessed17.02.2020] Available: https://rakhim.org/2019/12/summary-of-concurrency-is-
not-parallellism-a-talk-by-rob-pike/

6. NORMAND, E., Concurrency and Parallelism in the real world [online] [accessed
19.02.2020] Available: https://lispcast.com/concurrency-vs-parallelism/

7. ALECU, F., Parallelism Implementation Mechanism [online] [accessed 21.02.2020]
Available: http://revistaie.ase.ro/content/34/alecu.pdf

8. BUSTARD, D., Concepts of Concurrent Programming. Curriculum module. Pittsburgh
(USA): Carnegie Mellon University. Software Engineering Institute, April 1990.

https://medium.com/@trevor4e/learning-gos-concurrency-through-illustrations-8c4aff603b3
https://medium.com/@trevor4e/learning-gos-concurrency-through-illustrations-8c4aff603b3
https://medium.com/swift-india/concurrency-parallelism-threads-processes-async-and-sync-related-39fd951bc61d
https://medium.com/swift-india/concurrency-parallelism-threads-processes-async-and-sync-related-39fd951bc61d
http://tutorials.jenkov.com/java-concurrency/concurrency-vs-parallelism.html
https://rakhim.org/2019/12/summary-of-concurrency-is-not-parallellism-a-talk-by-rob-pike/
https://rakhim.org/2019/12/summary-of-concurrency-is-not-parallellism-a-talk-by-rob-pike/
https://lispcast.com/concurrency-vs-parallelism/
http://revistaie.ase.ro/content/34/alecu.pdf

