

S1-3.10

Luminescence of β-Ga₂O₃ Nanoforms Obtained by Oxidation of GaSe Doped with Eu

V. Sprincean¹, D.Untila², A. Chirita¹, I. Evtodiev², and I. Caraman³

¹Faculty of Physics and Engineering, Moldova State University, Chisinau, Moldova Republic ²Institute of Electronic Engineering and Nanotechnologies "D. Ghitu", Chisinau, Moldova Republic

The GaSe single crystals were doped with Eu in the process of their synthesis and growth. The oxide of β -Ga₂O₃ doped with Eu in the form of massive nanowires was obtained by thermal treatment (TT) in the atmosphere of GaSe single crystals doped with 1.0 at.% and 3.0 at.% of Eu. The crystalline structure, surface morphology and photoluminescence spectra of GaSe:Eu and β -Ga₂O₃:Eu single crystals were studied. The Photoluminescence (FL) spectrum of GaSe doped with 1.0 at.% of Eu at room temperature is formed as a result of transitions of 5 D₀-> 7 F₁ to Eu³⁺ ion and as a result of radiation annihilation of n = 1 excitons in GaSe. The FL spectra of Ga₂O₃:Eu was interpreted on the basis of the energy level diagram of electrons in Eu³⁺ ion.

³Department of Environmental Engineering and Mechanical Engineering, University of Bacau, Bacau, Romania