S1-2.1

Modeling of the Valence Tautomeric Transformation in Heterometallic [Cr-dhbq-Co] Molecules

M.A. Roman and S.I. Klokishner

Institute of Applied Physics, Chisinau, Republic of Moldova

In the present communication we report a model that describes the valence tautomeric transformation in a crystal consisting of heterometallic [Cr-dhbq-Co] molecules. The model takes into account the states arising from two different configurations of the molecule, namely, Cr^{3+} -dhsq³⁻ -Co³⁺ and Cr^{3+} -dhsq²⁻ -Co²⁺, the Heisenberg exchange interaction between the dhsq³⁻ ligand and the Cr^{3+} ion as well as the cooperative electron-deformational and dipole-dipole interactions. The problem is solved in the mean field approximation. The main peculiarities of the valence tautomeric transformation are elucidated. It is demonstrated that the electron transfer ligand-Co is accompanied not only by the significant increase of the effective magnetic moment but also by the appreciable change in the microscopic polarization. The model provides quite a good description of the experimental data on the temperature dependence of the effective magnetic moment in the [(Cr(SS-cth))($(Co(RR-cth))(\mu-dhbq)$](PF_6)₃ compound.