

S1-1.3

Broad-band Spectroscopy of Nanoconfined Water Molecules

M.A. Belyanchikov¹, M. Savinov², Z.V. Bedran¹, P. Bednyakov², P. Proschek³, J. Prokleska³, V.I. Torgashev⁴, E.S. Zhukova¹, S.S. Zhukov¹, L.S. Kadyrov¹, V. Thomas^{5,6}, A. Dudka⁷, A. Zhugayevych⁸, V.B. Anzin^{1,9}, R.K. Kremer¹⁰, J.K.H. Fischer¹¹, P. Lunkenheimer¹¹, A. Loidl¹¹, E. Uykur¹², M. Dressel¹², and B. Gorshunov¹

²Institute of Physics and Technology, Moscow Region, Russia
²Institute of Physics, Czech Academy of Sciences, Praha 8, Czech Republic
³Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Prague
⁴Czech Republic
⁴Faculty of Physics, Southern Federal University, Rostov-on-Don, Russia
⁵Institute of Geology and Mineralogy, RAS, Novosibirsk, Russia
⁶Novosibirsk State University, Novosibirsk, Russia
⁷Shubnikov Institute of Crystallography, "Crystallography and Photonics", RAS, Moscow, Russia
⁸Skolkovo Institute of Science and Technology, Moscow, Russia
⁹Prokhorov General Physics Institute, RAS, Moscow, Russia
¹⁰Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
¹¹Experimental Physics V, University of Augsburg, Augsburg, Germany

¹²1. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany

We have performed broad-band spectroscopic investigations of vibrational and relaxational excitations of water molecules confined to nanocages within artificial beryl and mineral cordi-erite crystals. Signatures of quantum critical phenomena within the H₂O molecular network are registered in ber-yl. In cordierite, a density functional analysis is applied to reconstruct the potential energy landscape experienced by H₂O molecules, revealing a pronounced anisotropy with a potential well of about 10 meV for the molecular dipole moment aligned along the b-axis. This anisotropy leads to a strongly tempera-ture dependent and anisotropic relaxational response of the dipoles at radiofrequencies with the activation energies corre-sponding to the barriers of the rotational potential. At T \approx 3 K, we identify signatures of a transition into a glassy state com-posed by clusters of H₂O dipoles. Rich set of anisotropic and temperature-dependent excitations are observed in the te-rahertz frequency range which we associate with rotation-al/translational vibrations.