S3-1.7 UV effect on NO₂ Sensing Properties of Nanocrystalline In₂O₃

A. Ilin¹, N. Fantina¹, M. Martyshov¹, E. Forsh, P. Forsh^{1, 2} and P. Kashkarov^{1, 2, 3, 4} ¹Physics Department, Lomonosov Moscow State University, Moscow, Russia ²National Research Centre "Kurchatov Institute", Moscow, Russia ³Department of nano-, bio-, info- and cognitive technologies, Moscow Institute of Physics and Technology, Dolgoprudny, Russia ⁴Physics Department, Saint Petersburg State University, Saint Petersburg, Russia

Nanocrystalline indium oxide films with extremely small grains in range of 7 to 40 nm were prepared by sol-gel method. The influence of grain size on the sensitivity of indium oxide to nitrogen dioxide in low concentration at room temperature was investigated under the UV illumination and without illumination. The sensitivity increases with the decrease of grain sizes when In_2O_3 is illuminated while in the dark In_2O_3 with intermediate grain size exhibits the highest response. An explanation of the different behavior of the In_2O_3 with different grain size sensitivity to NO_2 under illumination and in the dark is proposed. The pulsed illumination is demonstrated may be used for NO_2 detection at room temperature that significantly reduces the power consumption of sensor.