ГЕНЕРАЦИЯ ТЕРАГЕРЦОВОГО ИЗЛУЧЕНИЯ В ПРОЦЕССЕ РЕЗОНАНСНОГО ВОЗБУЖДЕНИЯ ЭКСИТОНОВ В ПОЛУПРОВОДНИКАХ

П.И. Хаджи, И.В. Белоусов, А.В. Коровай, Д.А. Марков, О.В. Коровай

Институт прикладной физики АН Молдовы MD-2028 Кишинев, Молдова Государственный университет им. Т.Г. Шевченко MD-3300 Тирасполь, Молдова fmf_nokr@spsu.ru

Abstract: A new mechanism of the generation (amplification) of terahertz radiation in semiconductors is proposed, which is based on the quantum transitions between two-exciton and biexciton under conditions of single-photon excitation from the ground state of a crystal.

Ключевые слова: терагерцовое излучение, экситон.

І. Введение

Проблемы генерации терагерцового излучения в размерно-ограниченных полупроводниковых структурах привлекают в последние годы всё больший интерес. Терагерцовое излучение наблюдалось при квантовых переходах в асимметричных связанных квантовых ямах [1-3], в сверхрешётках [4-5], в отдельно взятой квантовой яме как результат квантовых биений между экситонами с лёгкими и тяжелыми дырками [1]. На важную роль экситонных состояний в процессе генерации терагерцового излучения, особенно когда накачка действует в экситонной области спектра, указано в [1, 2, 6-8]. В [9] наблюдалась генерация терагерцового излучения в поляритонных спектрах благодаря ультрабыстрой модуляции частоты перехода между модой микрорезонатора и экситонным уровнем, а в [10] – поглощение этого излучения экситонными поляритонами в квантовых дотах.

Мы предлагаем новый механизм генерации (усиления) терагерцового излучения в объемных либо размерно-ограниченных полупроводниках с использованием экситонного и биэкситонного состояний.

II. Основные уравнения

Пусть падающий на полупроводник импульс резонансного лазерного излучения с частотой, равной частоте экситонного перехода w_0 , возбуждает экситоны из основного состояния кристалла (рис. 1).

Рис. 1 Схема энергетических уровней и квантовых переходов.

Считаем экситонное состояние ex макрозаполненным. Вместе с ним макрозаполненным является также и двухэкситонное состояние 2ex на частоте $2w_0$. Эти состояния неоднократно использовались для интерпретации экспериментальных результатов по четырехволновому смешению в полупроводниках [11, 12], а также при исследовании двухфотонного двухэкситонного поглощения света [13] и процесса фотораспада (фотодиссоциации) биэкситона [14]. Эти же состояния, по-видимому, могут играть важную роль в процессе генерации терагерцового излучения. Поскольку биэкситонное состояние biex с собственной частотой $W_0 = 2w_0 - W_m$ расположено ниже двухэкситонного состояния с частотой $2w_0$ на величину W_m , то между состоянием 2ex и biex в условиях однофотонного возбуждения экситонов из основного состояния кристалла возникает инверсия населенностей. Поэтому если запустить в кристалл слабый импульс терагерцового излучения *W*_{*m*}, то такое излучение будет усиливаться благодаря с частотой W_2 , равной индуцированному сбросу инверсии.

Законы сохранения энергии и импульса для области частот двухэкситонбиэкситонного перехода имеют вид:

$$2E_{ex}(\mathbf{k}_1) = E_{biex}(\mathbf{q}) + \mathbf{h}W_2, \quad 2\mathbf{k}_1 = \mathbf{q} + \mathbf{k}_2, \quad (1)$$

где $\mathbf{k}_1 = \mathbf{k}_{phot}$, **q** и \mathbf{k}_2 – волновой вектор экситона (фотона, возбуждающего его), биэкситона и терагерцового кванта с частотой w_2 , соответственно. Тогда для энергии кванта $\mathbf{h}w_2$ терагерцового излучения получаем выражение:

$$\mathbf{h}\mathbf{w}_2 = \mathbf{I}_m + \frac{\mathbf{h}^2}{4m_{ex}} \mathbf{k}_2 (2\mathbf{k}_1 + \mathbf{q}), \qquad (2)$$

где m_{ex} – трансляционная масса экситона. При $\mathbf{k}_2 = 0$ из (1) и (2) находим $\mathbf{q} = 2\mathbf{k}_1$ и $\mathbf{h}w_2 = I_m$, т.е. энергия кванта терагерцового излучения точно равна энергии связи биэкситона.

Пусть в кристалле распространяются две плоские электромагнитные волны: одна с амплитудой поля E_1 и частотой w_1 , резонансной частоте экситонного перехода w_0 , а другая – с амплитудой E_2 и частотой w_2 , резонансной частоте двухэкситон-биэкситонного перехода (рис. 1). Тогда гамильтониан взаимодействия обеих волн с экситонами и биэкситонами имеет вид:

$$H = -\mathbf{h}g(a^{+}E_{1}^{+} + aE_{1}^{-}) - \mathbf{h}m(a^{+}a^{+}bE_{2}^{+} + b^{+}aaE_{2}^{-}),$$
(3)

где *g* – константа взаимодействия экситонов с полем волны, *m* – константа оптического двухэкситон-биэкситонного перехода, *a* и *b* – амплитуды экситонной и биэкситонной волн

Chisinau, 17—20 May 2012 - 140 - поляризации среды соответственно, E_1^+ и E_2^+ (E_1^- , E_2^-) – положительно (отрицательно) – частотные компоненты полей волн.

Используя (3), легко получить гайзенберговские уравнения для амплитуд экситонной биэкситонной волн. Решая эти уравнения в стационарном режиме, можно найти эти амплитуды и затем определить восприимчивости среды c_1 и c_2 для областей частот w_0 и $2w_0 - \Omega_m$ соответственно:

$$c_{1} = -\frac{\mathbf{h}g^{2}}{\Delta_{1} + ig_{1} - \frac{2m^{2}n|E_{2}|^{2}(2\Delta_{1} - \Delta_{2} - ig_{2})}{(2\Delta_{1} - \Delta_{2})^{2} + g_{2}^{2}}}, \quad c_{2} = -\frac{\mathbf{h}m^{2}n^{2}(2\Delta_{1} - \Delta_{2} + ig_{2})}{(2\Delta_{1} - \Delta_{2})^{2} + g_{2}^{2}}, \quad (4)$$

где g_1 и g_2 – феноменологически введенные константы затухания экситонного и биэкситонного состояний, описывающие уход экситонов и биэкситонов из когерентных мод, $\Delta_1 = w_1 - w_0$, $\Delta_2 = w_2 - I_m / \mathbf{h}$ – расстройки резонанса для частот обеих волн по отношению к соответствующим частотам переходов, n – концентрация экситонов, которая определяется из выражения:

$$n\left\{\left[\Delta_{1}-(2\Delta_{1}-\Delta_{2})\frac{2\boldsymbol{m}^{2}\boldsymbol{n}|\boldsymbol{E}_{2}|^{2}}{(2\Delta_{1}-\Delta_{2})^{2}+\boldsymbol{g}_{2}^{2}}\right]^{2}+\left[\boldsymbol{g}_{1}+\boldsymbol{g}_{2}\frac{2\boldsymbol{m}^{2}\boldsymbol{n}|\boldsymbol{E}_{2}|^{2}}{(2\Delta_{1}-\Delta_{2})^{2}+\boldsymbol{g}_{2}^{2}}\right]^{2}\right\}=\boldsymbol{g}^{2}|\boldsymbol{E}_{1}|^{2}.$$
(5)

Из (4) следует, что при любых расстройках резонанса $\text{Im } c_1 = c_1'' > 0$, а $\text{Im } c_2 = c_2'' < 0$. Следовательно, при распространении в среде излучение на частоте w_2 будет усиливаться, а на частоте w_1 – ослабляться.

Простоты ради будем далее полагать константы затухания g_1 и g_2 одинаковыми, расстройки резонанса $D_2 = 0$, а $D_1 \neq 0$. Используя нормировки $\Delta_1 \equiv \Delta = dg$, $E_{1,2} = C_0 F_{1,2}$, $n = N_0 m$, $x = x_0 t$, где $N_0 = g/m$, $C_0^2 = g^2/mg$, $x_0 = a^{-1}$, а a - коэффициент экситонного поглощения, уравнение (5) можно записать в виде:

$$m\left\{d^{2}\left(1-\frac{4m|F_{2}|^{2}}{4d^{2}+1}\right)^{2}+\left(1+\frac{2m|F_{2}|^{2}}{4d^{2}+1}\right)^{2}\right\}=|F_{1}|^{2}.$$
(6)

Из (6) видно, что произведение нормированной плотности экситонов *m* и нормированной плотности терагерцового излучения $I_2 = |F_2|^2$ является бистабильной функцией интенсивности накачки $I_1 = |F_1|^2$ в экситонной области спектра. Как видно из (6), при расстройках резонанса *d*, превышающих критическую расстройку d_c ($d > d_c$), где $d_c = \sqrt{(31+\sqrt{945})/2}/2$, имеет место бистабильность типа плотность-свет $mI_2(I_1I_2)$ (рис. 2).

Рис. 2 Зависимость mI_2 от I_1I_2 и расстройки резонанса d.

Из (6) также следует, что решение для плотности экситонов *m* в зависимости от интенсивности накачки можно представить выражением вида $mI_2 = f(I_1I_2)$, т.е. произведение mI_2 является функцией произведения интенсивностей I_1 и I_2 . Вводя функции $y = 2mI_2/(4d^2 + 1)$ и $z = 2I_1I_2/(4d^2 + 1)$, уравнение (6) примет вид

$$v\left(d^{2}(1-2y)^{2}+(1+y)^{2}\right)=z.$$
(7)

Из (7) видно, что z(y) при $d > d_c$ имеет максимум и минимум в точках

$$y_{\pm} = 2 \left(2d^2 - 1 \pm \sqrt{d^4 - \frac{31}{4}d^2 + \frac{1}{4}} \right) / (3(4d^2 + 1))$$
(8)

соответственно. При $d = d_c$ функция z(y) имеет точку перегиба при $y = \frac{2}{3} \frac{2d_c^2 - 1}{4d_c^2 + 1}$, а при

 $d < d_c$ она является однозначной, монотонно возрастающей функцией в зависимости от y. Что касается функции y(z), т.е. $mI_2(I_1I_2)$, то при $d > d_c$ в некоторой области значений интенсивности накачки I_1 она является трехзначной, т.е. одному и тому же значению произведения амплитуд полей I_1I_2 соответствуют три значения произведения mI_2 . Таким образом можно утверждать, что плотность экситонов m может быть трехзначной функцией интенсивности накачки I_1 (рис.2) при $d > d_c$. Из рис.2 видно, что с ростом d при $d < d_c$ функция y(z) является нелинейной, монотонно растущей с ростом z, но однозначной. При $d = d_c$ возникает участок дифференциального усиления, а при $d > d_c$ имеет место трехзначная зависимость y от z. Это означает, что при $d > d_c$ плотность экситонов сначала медленно растет с ростом интенсивности накачки I_1 вдоль нижней ветви бистабильной

кривой до точки с вертикальной касательной в зависимости y(z), в которой происходит скачок с нижней ветви на верхнюю, вдоль которой далее у медленно растет с ростом z. При уменьшении интенсивности накачки возникает скачок с верхней ветви бистабильной кривой на нижнюю, но в другой точке и далее уменьшение у при уменьшении z. Если $d = d_c$, то при некотором значении z имеет место быстрый рост функции y(z), т.е. возникает участок дифференциального усиления. Таким образом, при $d \ge d_c$ в кристалле существует два домена: домен высокой и домен низкой плотности экситонов и биэкситонов, граница раздела между которыми определяется интенсивностью накачки I_1 .

Из (7) видно, что возможен также и частотный гистерезис, который определяет неоднозначную зависимость плотности экситонов m от расстройки резонанса d при фиксированном значении интенсивности накачки I_1 (рис.2). Видно, что при фиксированном значении z (интенсивности накачки I_1) плотность экситонов сначала растет вдоль верхней ветви гистерезисной кривой y(d) до точки с вертикальной касательной, в которой происходит скачок на нижнюю ветвь, вдоль которой функция y(d) убывает с ростом d. При уменьшении d снова имеет место скачок с нижней ветви на верхнюю, но при меньших значениях d и далее y(d) уменьшается при уменьшении d. Таким образом, если изменять частоту поля накачки, то в этом случае также может существовать бистабильность и домены высокой и низкой плотности экситонов и биэкситонов в кристалле.

Из укороченных волновых уравнений для полей в приближении медленно меняющихся огибающих получаем следующий интеграл движения

$$I_{2} = I_{20} \exp\left(\frac{c}{2} \left(I_{10}^{2} - I_{1}^{2}\right)\right), \tag{9}$$

связывающий интенсивности обеих волн в любой точке кристалла, где $c = \frac{e_{10}}{e_{20}} \frac{k_2}{k_1} \frac{m_g}{g^2}$.

Интенсивность I_2/I_{20} волны на частоте w_2 , распространяющейся вглубь среды, сначала быстро растет с ростом координаты, затем скорость роста постепенно уменьшается, так что на больших расстояниях интенсивность этой волны насыщается, принимая максимальное значение $I_{2\text{max}}$, тогда как интенсивность волны накачки экспоненциально убывает. Вводя коэффициент усиления \tilde{g} этой волны по формуле $I_2(x) = I_{20} \exp(\tilde{g}x)$, получаем $\tilde{g}(x) = (b/x)(1 - \exp(-2a_{10}x))$, где a_{10} - коэффициент экситонного поглощения. При x = 0 коэффициент усиления имеет максимальное значение $\tilde{g}(0) = 2a_{10}b$, пропорциональное квадрату начальной интенсивности волны на частоте w_1 . С ростом x он монотонно убывает, обращаясь в нуль при $x >> a_{10}^{-1}$.

III. Заключение

Таким образом, мы показали, что при накачке в экситонное состояние возникает инверсия населенностей между двухэкситонным и биэкситонным состояниями, на переходе между которыми возможна генерация терагерцового излучения. Интенсивность волны терагерцового излучения экспоненциально растет с ростом интенсивности накачки.

IV. Библиография

- 1. M.C. Nuss, P.C.M. Planken, I. Brener et al., Appl. Phys. B 58, 249 (1994).
- 2. M.S.C. Luo, S.L. Chuang, P.C.M. Planken et al., IEEE J. Quantum Electron. <u>30</u>, 1478 (1994).
- 3. P.G. Huggard, C.J. Shaw, S.R. Andrews et al., Phys. Rev. Lett. <u>84</u>, 1023 (2000).
- 4. T. Meier, P. Thomas, S.W. Koch, Phys. Low-Dimens. Semicond. Struct. 3/4, 1 (1998).
- 5. J.M. Lachaine, M. Hawton, J.E. Sipe, M.M. Dignam, Phys. Rev. B <u>62</u>, R4829 (2000).
- 6. K.V. Kavokin et al, Appl. Phys. Lett., <u>97</u>, 201111 (2010).
- 7. C. Chansungsun, L. Tsang, S.L. Chuang, J. Opt. Soc. Am. B <u>11</u>, 2508 (1994).
- 8. I.G. Savenko, I.A. Shelykh, M.A. Kaliteevski, Phys. Rev. Lett. <u>107</u>, 027401 (2011).
- 9. T. Berstermann, A.V. Scherbakov, A.V. Akimov et al., Phys. Rev. B 80, 075301 (2009).
- 10. C.A. Vera-Ciro, A. Delgado, A. Gonzalez, arXiv 1004.3940v.2 (2010).
- 11. E.J. Mayer, G.O. Smith, V. Heukeroth et al., Phys. Rev. B 50, 14730 (1994).
- 12. Iu.P. Svirko, M. Kuwata-Gonokami, Phys. Rev. B <u>62</u>, 6912 (2000).
- 13. К.Г. Петрашку, А.С. Руссу, П.И. Хаджи, ФТТ, <u>23</u>, 3191 (1981).
- 14. П.И. Хаджи, К.Г. Петрашку, ФТП, <u>9</u>, 2340 (1975).