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Abstract. One of the challenges for quantum computers, including the most promising for 

practical implementations NMR-based quantum computers, at the moment is to increase the 
number of qubits available for computation. Using the invariance of the spin projections operators 
under orthogonal reduction and orthogonal addition of the basis spin functions, the quantum 
computation at any number of qubits is proposed. It is showm that a quantum computer with N 
qubits can be characterized by the spin S = 2N-1 - 1/2 . The Hadamard gate in the two-Bose 
operators representation for a great number of qubits (N ∞→ ) has been determined. 
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I. Introduction 
 
The number of publications in the field of quantum informatics is in a continuous increasing 

that is caused by much larger possibilities of quantum computers comparatively with classical ones. 
The main difference between quantum and classical computers is due to the fact that the complete 
characterization of a register containing of N qubits (such as N coupled 1/2-spins) requires 2N 
complex numbers, whereas a register of N classical bits is completely characterized by N integer (0 
or 1). The logic gates of a quantum computer can perform logic operations on a qubits in different 
states at the same time, whereas a conventional bits in classical computer are limited to operations 
performed one after the other. 

At present experimental approaches for the realization of quantum computers are connected 
with ion traps [1], quantum dots [2], Josephson contacts [3], endohedral fullerenes [4], liquid state 
NMR and solid state NMR/EPR [5, 6]. Even at the low level of three qubits the resulting 
experiments were sufficiently complicated to motivate the development and use of a host 
simplification technique and experimental methods to construct the quantum computer. 

NMR spectroscopy has become well established as a tool for experimental investigation of 
quantum computation. Fundamental quantum gates, quantum algorithms, quantum error correction 
and other issues in quantum information theory have been demonstrated at the level of a few qubits 
using liquid state NMR systems at room temperature [7-20]. Among other methods the NMR 
spectroscopy is most advanced in the practical implementation of quantum algorithms. There are 
several publications (see for example [21-23]), which the construction of a NMR realization from 
the theoretical algorithm to the final spectrometer output and the algorithm result is described. As 
candidate for quantum computing, NMR is attractive because of the long coherence time exhibited 
by the spins and also due to complexity of logical operations that can be executed on modern NMR 
spectrometers. A molecule with N spin 1/2 nuclei can be visualized as an N-bit quantum computer, 
provided the spins are able to interact, one can manipulate their state in a desired fashion and there 
is a well-defined method of reading out the result of the computation [23]. NMR spectroscopy 
provides convenient methods for the controlled manipulations of nuclear spins, which are 
particularly well suited to act as qubits because of their isolation from the environment. However, a 
liquid NMR sample contains an ensemble of many identical spin systems and it is not possible to 
manipulate or to detect individual spin systems. Therefore, at the beginning of a computation, NMR 
quantum computers are commonly prepared in a “pseudo-pure” state, and ensemble-averaged 
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expectation values are detected rather than the observables of individual spin systems [15,16]. The 
behavior of pseudo-pure states is similar in many respects to a pure ones. In particular, the pseudo-
pure states can be described by a type of spinors, which evolve via unitary transformations under 
the Hamiltonian of NMR and whose expectation values are easily obtained from the corresponding 
ensemble-average expectation values. These spinors were called pseudo-spinors, to emphasize the 
fact that their physical interpretation differs from that of the spinors that describe isolated spin 
systems. 

In this paper, the quantum computing based on two-Bose operators representation of the 
angular momentum for the case of a big number of qubits is presented. 

 
II. Results 

 
The Hilbert space of a single spin- 21  particle (qubit) is spanned by the two mutually 

orthogonal basis states [5] 
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To obtain the basic states for a system of two qubits it is necessary to calculate the following 
Kronecker products of ket-vectors: 0000 ⊗= , 1001 ⊗= , 0110 ⊗=  and 

1111 ⊗= . It is easy to show that these four Kronecker products can be mapped to the standard 
spinor basis of the spin 2/3S = . Indeed, the Kronecker product ⊗  of an nm ×  matrix A with an 

'' nm ×  matrix B by definition is and '' nnmm ×  matrix given by 
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According to this definition, the basis vectors for a system of two qubits are given by 
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For a system of three qubits there are eight basis state 000 ⊗ , 010 ⊗ , 100 ⊗ , 110 ⊗ , 

001 ⊗ , 011 ⊗ , 101 ⊗ and 111 ⊗  wich correspond to the basis states of a spin 
2/7=S . In the case of N qubits the basis vectors correspond to the eigent states of the spin 

projection operator ZS , with the spin 
2
12 1 −= −NS . 
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 It can be noticed that making a set of Kroneker products of spinors 
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to diffrent qubits, the spinor basis for the spin 
2
12 1 −= −NS  can be obtained. However, it is not 

necessary to calculate the Kronecker products for each number N of qubits. It is sufficient to use the 
known standard basis vectors for the spin S at given number N of qubits. The values of S at 
different N are presented in the Table 1. Thus, in the case of N qubits there are N2  spinor basis 

vectors corresponding to the spin 
2
12S 1N −= − . With increasing number of qubits the dimension of 

SX, SY and SZ matrices quickly increases (for exemple, at N = 10 the dimension of spin matrices is 
10241024 × , 2/1023S = ). 

 
Table 1. Values of the effective spin S for different numbers N of qubits. 

N 1       2       3       4       5       6       7       8        9       10       …       N 
S 

2
1     

2
3      

2
7      

2
15    

2
31     

2
63    

2
127  

2
255    

2
511   

2
1023    …    

2
12 1 −−N  

 
It is possible to show that all multi-qubit operations can be decomposed into one- and two-

qubit operations [5]. On the other hand, there are the possibilities for quantum computing without 
such decomposition. This approach is based on the theorem about full reduction of the operator 
loads for the operators of angular momentum projections in the two-Bose operators representation 
[25]. As a consequence of this theorem, in the two-Bose operators representation the spin operators 
are invariant relative to orthogonal addition or orthogonal reduction of the spin space basis. 
Therefore, in this representation the operators YX iSSS ±=±  and SZ have the form 

                          21 aaS +
+ = , ( ) 12 aaSS ++

+− == , ( )22112
1 aaaaSZ

++ −=                                    (1) 

independent of the spin value S. Here +
1a and +

2a , 2a  are the operators of creation and annihilation 
of two different types of Bose-particles. These operators satisfy the commutation relations 

[ ] [ ] 1a,aa,a 2211 == ++ , [ ] [ ] 0a,aa,a 2121 == ++  
and, what is more, satisfy the condition for the operator of total number of bosons 

S2aaaannn 221121 =+=+= ++ ,                                              (2) 
which limits the number of Bose-particle states by means of which the spin wave functions of a 
system with the spin S are determined. 
Since in the two-Bose operators representation the forms of +S , −S  and ZS  operators does not 
depend on the spin S of the multi-qubit, specific features on N-qubits system are determined by the 

corresponding spin wave functions. For a system with the spin 
2
12 1 −= −NS  these spin wave 

functions in the two-Bose operators representation are 
 ,120,221,322,...,232,122,012

212121212121
−−−−−− NNNNNN       (3) 

where 
i

N k−2  is the wave function of ( )kN −2 -th excited boson state containing kN −2  bosons 

of the i -th type ( 2,1=i ) and 0  is the vacuum state of the i -th Bose field ( 2,1=i ). On the basis of 

a set of pair products of different boson wave functions 
1

k  and ( )12lkl N
2

−=+  from (3) the 
basis functions for the systems of one, two, etc. qubits can be easily obtained. The basis functions 
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from (3) were obtained as a particular case of general formula for spin wave functions in the two-
Bose operators representation [24, 26]: 

                    
( ) ( )

( ) ( ) 0
!!

1, 21
MSMS aa

MSMS
MS −+++

−+
= ,                                              (4) 

taking into account the kinematic condition (2) for the spin 
2
12 1 −= −NS . In (4) M is the eigenvalue 

of the operator SZ. 
Now it is clear that for quantum computing by means of the creation operators ( )++

21 ,aa  and 
annihilation operators ( )21,aa  of two Bose fields it is necessary: 
• to transfer the spin operators SX, SY and SZ into two-Bose operators representation; 
• to use the spin wave functions (3) in the two-Bose operators representation. 

As an example, let us consider the Hadamard gate. In the case of one qubit the Hadamard 
gate H [5] is defined by 

   ( )ZXH +=
2

1
1 ,                                 (5) 

where 
ZX SZSX 2,2 == . (6) 

Taking into account (1) and (6), the Hadamard gate from (5) in the two-Bose operators 
representation is 

( ) ( )[ ]2122111 2
1 aaaaaaH −++= ++ .    (7) 

The matrix of the operator H1 from (7), which was found by means of basis functions 
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which coincides with the result obtained using the spinor formalism.  
For two qubits the Hadamard gate is 

                               ( ) ( )ZXZXHHH +⊗+=⊗=
2
1

112                                     (8) 

In the two-Bose operators representation the operator H2, taking into account (7) and (8), have the 
form 

                               ( ) ( )[ ] ( ) ( )[ ]2122112122112 2
1 aaaaaaaaaaaaH −++⊗−++= ++++             (9) 

The matrix H2 defined in the spinor basis { }2/3,2/1,2/1,2/3 −− , that is equivalent to 

two-Bose operators basis { }
21212121
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In the case of three qubits we have 
111123 HHHHHH ⊗⊗=⊗= . 

In the spinor basis, the H3 matrix is 
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( ) ( ) ( )ZXZXZXH +⊗+⊗+=
22

1
3  

while in the two-Bose operators representation it is 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]2122112122112122113 22
1 aaaaaaaaaaaaaaaaaaH −++⊗−++⊗−++= ++++++   (10) 

 
The matrix H3 defined in the spinor basis 
{ }2/7,2/5,2/3,2/1,2/1,2/3,2/5,2/7 −−−−  or in the equivalent two-Bose 

operators basis { }
2121212121212121

70,61,52,43,34,25,16,07 , is 
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For any number N of qubits the Hadamard operator HN is  
1111 ... HHHHH N ⊗⊗⊗⊗= , 

where the operator H1 is found in this Kronecker product N times. On the other hand, the 
operator HN is given by recursive formula 
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In the spinor basis the operator HN  is 

( ) ( ) ( ) ( )ZXZXZXZXH NN +⊗⊗+⊗+⊗+= ...
2

1
2/ , 

while in the two-Bose operators representation it is 

                ( ) ( )[ ] ( ) ( )[ ]2122112122112/ ...
2

1 aaaaaaaaaaaaH NN −++⊗⊗−++= ++++ .              (12) 

All calculations using the operators from (7), (9), (10) and (12) must be performed taking into 
account the kinematic condition (2). 
 The matrix HN is defined in the spinor basis 
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2
12,

2
32,...,

2
32,

2
12 1111 NNNN  or in the equivalent two-Bose operators basis 

from (3). Using the formula (11) it is easy to show that 2
NH  is the identity operator ( 12 =NH ). 

 By this way, we can find the transformation properties of the spin basis functions in the two-

Bose operators representation for the spin 
2
12 1 −= −NS  under action of Hadamard operator in the 

case of any number N of qubits. In particular, if N = 77 then the total number of bosons of first and 
second types, which is necessary for realization of the two-Bose operators representation in the case 

of spin 7676 2~
2
12 −=S , is 2310~N . At such large number of qubits the kinematic condition (2) 
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does not play such an important role as at low values of the spin S and, respectively, for small 
number of qubits. In this case the number of spin states is so large that it can be considered infinite, 
as is the number of degrees of freedom of the boson field. 
 The transition from spinor representation to two-Bose operators one must be done for spin 
wave functions, spin operators, Zeeman operator, evolution operator, spin dependent density 
operator, etc. 
The quantum information processing using two-Bose operators representation of angular 
momentum is an effective processing in the case of high number N of qubits because in this case it 
is possible to use the Wick's theorem [27] that simplifies calculations. 
 

III. Conclusions 
 

The NMR-based quantum computer is promising technique to illustrate and explore ideas in 
quantum computation. It is caused by demonstrating experimentally various selective pulse and 
implementations of pseudo-pure states, novel quantum logic gates and quantum algorithms. The 
easy with which quantum circuits can be implemented in NMR experiments and the facility with 
which spin dynamics can be manipulated using a variety of techniques is a major advantage of 
NMR-based quantum computers.  

However, one of the challenges for NMR spectroscopists at the moment is to increase the 
number of qubits available for computation. A set of important problems in quantum computing 
such as implementing quantum algorithms with a greater number of qubits, constructing error 
correcting circuits for fault-tolerant computing and performing large scale quantum simulations 
awaiting their solution in the near future. In the case of a large number of qubits the quantum 
computing based on two-Bose operators representation of the angular momentum can be preferable 
because in this case the well developed methods of quantum electrodynamics can be used. 
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