Magnesium and Cadmium-alloyed Zinc Oxide Nanowires for Device Applications

O. Lupan¹, L. Chow², S. Railean¹, V. Sontea¹, I. Pocaznoi¹

¹Department of Microelectronics, Technical University of Moldova, 2004 Chisinau, Moldova ²Department of Physics, University of Central Florida, Orlando, FL 32816, USA lupan@mail.utm.md

Magnesium and cadmium-alloyed zinc oxide $(Zn_{1-x}Mg_xO \text{ and } Zn_{1-x}Cd_xO)$ nanowires/nanorods are important for wavelength-tunable light-emitting diodes (LEDs) [1]. We present an experimental approach to study $Zn_{1-x}Mg_xO$ and $Zn_{1-x}Cd_xO$ nanowires (NWs) and their integration in LED structures. $Zn_{1-x}Mg_xO$ and $Zn_{1-x}Cd_xO$ NWs were deposited on p-GaN substrates. Low-dimensional ternary structures have been obtained for Magnesium sulfate (MgSO₄), cadmium chloride (CdCl₂) concentration in the deposition bath lower than 5 μ M whereas at higher concentration crystallized CdO appears and the aspect ratio of the rods decreased. Accordingly to SEM observations the $Zn_{1-x}Cd_xO$ have a nanorod morphology. Structural analyses demonstrate that the ZnO nanomaterial is doped with the Mg or Cd incorporated within ZnO NWs. X-ray diffraction analysis demonstrates an increase in the lattice parameters of Cd-alloyed ZnO. Reported results are of great importance for next research on band-gap engineering of low-dimensional zinc oxide by doping/alloying NWs.

Figure 1 XRD patterns of the ZnO and $Zn_{1-x}Mg_xO$ nanomaterials: The slow scans are presented for better view of the (002) peaks taken of the pure and Mg-alloyed ZnO nanowires.

BIBLIOGAPHY

1. Lupan, O.; Pauporté Th.; Viana, B. Low-voltage UV-Electroluminescence from ZnO-Nanowire Array/p-GaN Light Emitting Diodes. *In: Advanced Materials*, 2010, 22(30), 3298-3302.