
7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 218

I. INTRODUCTION

Installing an automatic build process for your projects is

very common today and best practice. In the java world

Maven[3] is a very popular build tool and has proven its

matureness over the years. Using maven[3] to build your

client-side project has the following advantages:

 Find potential problems in your code. Bugs might be

identified and breaking code conventions can be

detected early.

 Run the build automatically on a regular base

 Easily handle refactorings and other small changes

 Ability to do continuous integration

 Increase confidence in code quality for each build

II. WHAT IS JSHINT?

JSHint[1] is a JavaScript program that looks for problems

in JavaScript programs. It is a code quality tool.

When C was a young programming language, there were

several common programming errors that were not caught

by the primitive compilers, so an accessory program called

lint was developed that would scan a source file, looking

for problems.

As the language matured, the definition of the language

was strengthened to eliminate some insecurity, and

compilers got better at issuing warnings. lint is no longer

needed.

JavaScript is a young-for-its-age language. It was originally

intended to do small tasks in web pages, tasks for which

Java was too heavy and clumsy. But JavaScript is a very

capable language, and it is now being used in larger

projects. Many of the features that were intended to make

the language easy to use are troublesome when projects

become complicated. A lint for JavaScript is needed:

JSHint, a JavaScript syntax checker and validator.

JSHint takes a JavaScript source and scans it. If it finds a

problem, it returns a message describing the problem and

an approximate location within the source. The problem is

not necessarily a syntax error, although it often is. JSLint

looks at some style conventions as well as structural

problems. It does not prove that your program is correct. It

just provides another set of eyes to help spot problems.

JSHint defines a professional subset of JavaScript, a stricter

language than that defined by Third Edition of the

ECMAScript Programming Language Standard. The subset

is related to recommendations found in Code Conventions

for the JavaScript Programming Language.

JavaScript is a sloppy language, but inside it there is an

elegant, better language. JSHint helps you to program in

that better language and to avoid most of the slop. JSHint

will reject programs that browsers will accept because

JSHint is concerned with the quality of your code and

browsers are not. You should accept all of JSHint's advice.

III. USING WRO4J MAVEN PLUGIN

wro4j[2] mavenp[3] plugin provides a new goal called

jshint which can help you to start auditing and enforcing JS

code through a mechanism like JSHint[1].

In order to use it you have to follow several simple steps.

Project layout:

By default, wro4j maven plugin relies on a typical

maven[3] project layout.

Build-Time Javascript Code Analysis

Abstract — Javascript can be tough to maintain. The bigger is your project, the harder it will be to ensure

that everything is ok. Luckily, there are tools to help you with that.

One of the recently launched tools is JSHint, a online JavaScript checking tool. The tool is very similar to

JSLint, but is designed to be more customizable and community-oriented. JSHint can help you to detect

errors and potential problems in JavaScript code and to enforce your team's coding conventions. It is very

flexible so you can easily adjust it to your particular coding guidelines and the environment you expect your

code to execute in.

The purpose of this article is to show you how to use jsHint as a build-time solution using wro4j maven

plugin.

Alexandru Objelean
Moldova State University

alex.objelean@gmail.com

7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 219

This structure can be different, depending on your

project. The implicit wro4j maven plugin settings will

assume you are using this structure. By default it will

search for a file called wro.xml at the following location

src/main/webapp/WEB-INF/wro.xml. The location of this

file is configurable. You'll find more about all available

configuration below. The purpose of wro.xml file is to

describe the way static resources are grouped and the order

in which these should be processed. By default the plugin

will process each resource one by one.

Configure pom.xml

Add wro4j maven plugin to the list of plugins in your

web project:

<plugins>
 <plugin>
 <groupid>ro.isdc.wro4j</groupid>
 <artifactid>wro4j-maven-

plugin</artifactid>
 <version>${wro4j.version}</version>
 <executions>
 <execution>
 <phase>compile</phase>
 <goals>
 <goal>jshint</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <options>devel,evil,noarg</options>
 </configuration>
 </plugin>
</plugins>

${wro4j.version} - is the latest wro4j version. The goal

which instructs wro4j to run jshint tool is called jshint.

Besides this goal, wro4j maven plugin provides also run

goal which performs the compression of the resources

(both js & css), but this is not in the scope of this post.

This plugin allows you configure the options used by

jshint. Specifying these options is optional. For the

complete list of available options, visit the JsHint project

homepage. As you can see in the above example, options

configuration contains a comma separated values.

Detailed plugin configurations:

 options - comma separated values used to instruct

jsHint how to analyze the js code.

 failNever - boolean flag. When true - the project

build will succeed even if there are errors reported by

jsHint. By default this value is false.

 ignoreMissingResources - if false, the build will

fail if at least one resource is missing or cannot be

accessed, otherwise only a warning will be displayed.

 targetGroups - (optional) a comma separated list

of groups you want to build. If you do not specify this

parameter, a file for each defined group will be generated.

 wroManagerFactory - Optional attribute, used to

specify a custom implementation of

MavenContextAwareManagerFactory interface. When this

tag is not specified, a default implementation is used. This

attribute is useful if you want to configure other processors

than default one.

 wroFile - the location of wro.xml file which

defines how resources are grouped. By default its value is

this: ${basedir}/src/main/webapp/WEB-INF/wro.xml . If

you have a different project structure or a different location

of wro.xml, then you should change the value of this

parameter.

 contextFolder - defines the location of web

application context, useful for locating resources relative to

servletContext. By default its value is:

${basedir}/src/main/webapp/

These parameters gives you enough control to customize

the wro4j maven plugin to work with any project structure.

When running the plugin and any problems are

encountered, you'll see a detailed list of the errors which

indicate the file containing the problems, line number

where the problem is and the detailed message describing

the problem. Here is an example:

[error] 1 errors found while processing
resource:

classpath:ro/isdc/wro/maven/plugin/js/u

ndef.js Errors are:

[ro.isdc.wro.extensions.processor.algor

ithm.jshint.JsError@19d75ee[
 line=4
 character=4
 reason='jQuery' is not defined.
 evidence=})(jQuery);
]]

These informations should be enough to help you to fix

any problems you may have.

7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 220

IV. CONCLUSIONS

Using wro4j maven[3] plugin with jsHint goal can help

you to ensure coding standards on your front-end

resources when using a project which respect a

maven project structure.

REFERENCES

[1] JSHint Home Page: http://jshint.com/

[2] Web Resource Optimization for java framework:

http://code.google.com/p/wro4j/

[3] “Overview of ApacheMaven 2 Effective

Implementation.” Brett Porter, Packt Publishing

http://jshint.com/
http://code.google.com/p/wro4j/

