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I. INTRODUCTION 

A failed sensor node can not respond to his call to 

the base station or cluster of related neighbouring nodes and 

thus lose part about military polygon control centre 

monitored  by WSN. 

The main cause of failure of sensor nodes in WSN is 

considered, by most scholars, depletion battery power 

supply node in most scientific papers published, the authors 

propose the use of deterministic models to assess the 

dynamics of the process of exhaustion of supply related 

node. 

Research whose results are presented in this paper 

led to the idea that the failure of nodes - the sensor is a 

random process caused primarily by random nature of 

exhaustion supply node expressed mainly by changing the 

supply voltage. At the same time failure event is a binary 

random event characterized the dependent variable (output) 

Y takes the value 1 when sensor node logic is failed and Y= 

0 when the node is not failed.  

For systems with discrete events characterized by 

discrete streams of operations and discrete activities 

accompanied by phenomena of blocking, non-

synchronization and conflicts new modelling formalisms 

have been developed [2] .Classic models covered by 

conventional identification methods describe the dynamic 

behaviour of a single object from a collection of similar 

objects in which processes that are subject to physical and 

 

 
 

chemical laws occur. In the present paper we are concerned 

with models of systems with binary independent  

random events. Unlike traditional models, this particular 

type of models describes a homogeneous lot M of 

cardinality N consisting of two distinct entities. These 

entities can be separated into two classes. Each entity in this 

population is characterized by a dependent variable Y 

(output) and one or more independent variables (input) x. 

Variable Y can take only logical values: 1 or 0, yes or no, 

sick or healthy, etc. The independent variable can take logic 

values or can take values in the set of real numbers. Based 

on experimental testing for each entity. Entities can be 

divided into two classes: entities class with Y = 1 and 

entities class with Y = 0. The model in which we have only 

one independent variable x is called the logistic model 

SISO (single - input - single - output).  

Problem description 

In the case of the identification theory, the model 

that expresses the probabilistic interdependence between 

the dependent variable Y, binary type, and one or more 

independent variables x, is called logistic regression.  

For example, the experimental data regarding 

sensors failure for the analysis of failure percent of a WSN 

node for monitor of a testing ground consist by a network 

with 23 sensor nodes.  

Issues to be resolved is obtaining a model that 

expresses the value of a node failure probability P (Y = 1 

|x), knowing the current value of the WSN node X related 

analysis. Such a pattern exists in mathematical statistics is 

called the Logistic Regression model. 
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II. LOGISTIC REGRESSION  STRUCTURES 

The regression equation obtained in this case is of a 

type different from other known regressions, such as 

continuous, single dimensional, multidimensional, linear 

and nonlinear etc. Logistic model structure for a SISO, 

found in the literature of expertise. In the variant (1) the 

continuous size “p” is a nonlinear function of x and of two 

unknown parameters
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If the event Y = 1, then this event’s occurrence takes 

place with the probability P(Y=1|x) =p. Unlike classical 

linear regression, in the case of logistic regression (1), 

instead  of dependent variable Y, which may take the binary 

value Y = 1 “failure” or Y = 0  "non-failure", it is used 

a continuous variable p, which takes values ranging from 0 

to 1. A value of p is interpreted as the probability of 

obtaining a "failure" (Y = 1), subject to the independent 

variable value x. Then the opposite event Y = 0 has a 

probability of occurrence P (Y = 0) = 1-p. This type of 

regression provides information about the importance of 

variables x in the differentiation of each entity within a 

given set of n entities sorting them into categories. In the 

WSN field these entities may be n nodes investigated by 

direct testing. The existence of these categories is 

determined by the variables x which are often referred to as 

categorical or predictor variables. The result of these 

experimental investigations constitutes the necessary data 

for the estimation of logistic parameters model. It can 

immediately be seen that, for an observation from the set of 

experimental observations (experimental data), if p> 0.5, 

then it is more likely for the observation to belong to the 

group characterized by Y = 1  

The data are obtained by successive direct 

observations on this set of n nodes resulting in the following 

sequence of n pairs of experimental data: 

  

X=[66,70,69,68,67,72,73,70, 57,63, 

70,,78,67,53,67,75, 70,81,76,79,75, 

76,58]-Data vector of the x and,  

Y=[0;1;0;0;0;0;0;0;1;1;1;0;0;1;0;0;0;0;0;0;1;0;1]- Data 

vector of the output                                                      (2) 

 
For logistic regression parameters determination 

there are used the n experimental data pairs which 

characterize the n entities (events) with binary 

characteristics of the set for which the SISO logistic type 

model is determined. The recommended criterion by 

systems theory identification for evaluating the matching 

degree between data and model, in such cases is the 

likelihood function [4]. 

III. LOG LIKELIHOOD FUNCTION FOR SISO 

LOGISTIC SYSTEM 

These data are direct successive observations of that 

particular set of n entities in which each entity i is 

characterized by the pair of values (Yi and xi). Based on 

these n pairs of experimental data those values of vector 

parameters  need to be determined so that the model 

obtained (having the structure (1) can best describe the 

experimental data and to ensure a high level of generality, 

in the sense of being able to correctly describe the specific 

logistics process behaviour in other points of the 

experimental data (2). Among these points from the 

experimental data set there are some in which Y = 1 and 

others in which Y = 0. Since the output of  the  process is a 

logistic variable which within the experiment takes the 

values Y1, Y2 ,..., Yn then the output of the model in the n 

experimental points is expressed by the probabilities 

sequence (p (Yi = 1 | Xi) or p (Yi = 0 | Xi) = 1 - p (Yi = 1 | 

Xi)). The probabilistic description of the entire set of n 

independent random events of logistic type is expressed by 

the product of n random probabilities related to observed 

binary random events: 

                                  
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Within this product there are two types of terms: 

terms corresponding events for which Yi = 1 pi = p = Pr 

(Yi = 1, xi, parameters) and terms related to the events for 

which Yi = 0 pi = 1-p. Under these conditions the relation 

(5) becomes: 
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In [5], the probability function (4) is marked L (data 

parameters) and is called the likelihood function of SISO 

logistic regression.  

If the case of logistics processes identification the 

problem is to find those values for model parameters that 

will ensure the maximum likelihood function. These values, 

in the case of a SISO model logistics are noted: 

0 1
şi 



and constitute the so-called model parameter 

estimates for the purposes of maximum likelihood. The 

problem of maximum likelihood estimates for a   logistic 

SISO regression model : 
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         Where 
T]

10
[
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   is the parameters estimation 

vector of the SISO logistic model.  

Applying the natural logarithm of the likelihood 

function (L) events results in the function log likelihood 
(LL) binary logistic model with random shit. This function 

denoted LL (βo, β1) has the expression: 

 

 

 

 

 

 

 

 

 

IV. EXPERIMENTAL DETERMINATION OF 

THE SEARCH FIELD BORDERS (SFB) 

Classical Monte-Carlo (fig.1)algorithm(CMCA) is 

random testing  of the Log Likelihood  surface, using two 

test sequences of random numbers S1 and S0 of finite 

length, (one sequence for each parameter 1  and 0 ). 

These sequences are cut from infinite strings of random 

numbers uniform probability distribution in the band- plan 

under investigation in the two parameters area. 

 

 

 

The two random sequences obtained from two 

random number generators in Matlab CMCA algorithm of 

random search of the maximum log likelihood   LL (βo, β1) 

simulation, in the SISO case, involves the execution of 

three steps[5] The three steps described above are 

performed within SFB  
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Fig. 2. Experimental determination of the SFB: 21 , -limits of 

variation of parameters in the search process; 0010 ,  - SFB 

centre coordinates in the plane parameters 

 

The node from the network centre coincides with the 

SFB centre only if LLF values in the 8 peripheral nodes are 

lower than the LLF values in the centre of the network. In 

the opposite case, when in one of peripheral nodes the SFB 

value is greater than the value of SFB in the centre then the 

network is moved placing the node in the centre in the 

point with the highest value of LLF. The search continues 

in the same manner until the greatest value of LLF is in 

centre network. In the case study shown in table 2 the 

parameters variation limits 5.1   also 22   and the 

initial coordinate’s dorm the centre of the network 

)0,0(),( 0010  are arbitrary (Fig. 2). 

CMCA application results in case 1 (for N = 50 

steps) for searching illustrates how the maximum LLF 

point in the parameters plane (point coordinates, β0 =- 

0.10127, β1 =- 3.043 ') was found after only 20 practical 

steps. And in the second case for N = 500, the coordinates 

point, β0 =- 0.103,  β1= - 3.003 was found after 25 steps.  

Limit values of the parameters (b0min, b0max, 

b1min, b1max) determines SFB. These limits are settled by 

means of pre explorations of the LLF values, made in a 9-

node network shown in Figure2. 

If the sequence of 1500 random numbers can be 

imagined as consisting of 100 consecutive segments of the 

same length N = 15 random numbers. Each of these 

segments can be used for repeated searching of he 

maximum LLF with CMCA. 

The apparent random nature of the topography as well as 

Step 1: Generate a pair of random numbers [S0 (k = 1), 

S1 (k = 1)] with these values and existing experimental 

data (12) is calculated log Likelihood(1)=LL(1) and is 

stored in  memory M: 

 

Step 2: increment by one count variable k = k +1 a 

number of tests and generates a new pair of random 

numbers that are calculated  LL (S0 (k), S1 (k), data) = 

LL (k) 

 

Step 3: Compare the L (k) with M from the previous step: 

                              IF, 

                          LL(k)>M 

                               THEN 

 replaced the old content is  LL (k)M and return to Step 

2  

                               OTHERWISE 

return to Step 2, M preserving the previous value. 

 

Fig.1 Classical Monte-Carlo algorithm (CMCA) 
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of the estimates can be noticed in all 100 cases (fig. 3 
where  - random-noise with zero average value and 

dispersion  . ). 

These observations lead us to the simple idea that instead of 

applying the CMCA only once on a long string of N random 

numbers we should apply  CMCA by N repeatedly, = N / 

No of times on shorter sequences formed of No random 

numbers. Then, based on the results (10) we determinate the 

parameter estimates through mediation. In the case of a 

MISO type logistics model with n+1 parameters and Nr, we 

have short sequences repetitions: 
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Where  i = 0,1,2 ,..., n  

From (7) results, 
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where M is mathematical expectancy operator and 
i  is 

the dispersion estimates of the parameters.  
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For N, >10 the noise dispersion can be approximated by the 

following relation (9). If samples of  length n from a 

population are extracted, then for values of n> 10 the 

sample averages are distributed (approximately) normally 

(according to the central limit theorem [7]). Given (11) it 

results that the distribution of random values probabilities 

of the estimates i

^

  are asymptotically Gaussian. Thus, you 

can apply the well known rule of the "three sigma" for 

determining the estimate probability |)(|
^

iiP   : 

 

997.03||
^



















r

ii
N

P I


    (10) 

From (10) results that the probability value is very close to 

one, for the inequality to be fulfilled ,  
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V. CONCLUSIONS 

The paper highlights the models of logistic 

processes particularities with random binary events and 

presents a technique for identifying these processes. In 

order to estimate the logistic model parameters, it is 

necessary to apply the statistical criterion maximum 

likelihood. Original Contributions: 

1. A Monte Carlo method is put forward in order to 

estimate logistic model parameters using the maximum log 

likelihood criterion; 

2. Statistical analysis of parameters estimate.   

3. In conclusion we consider that the theory of 

systems modelling and identification should be extended to 

the forecast for nodes failure on the basis of battery energy 

and others independent variables like sensor age expressed 

in time interval from putting in action of the battery, etc. 
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