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Abstract. Calculation of the service quality characteristics in a single-channel system with 
queue for the packet network is often reduced to the determination of the Hurst exponent 
for self-similar traffic, after which using the known Norros formula calculated average 
number of packets in the system. However, this method does not allow for the set value of 
the Hurst exponent calculated yet very important characteristics of quality of service, such 
as the average delay time of packets in the storage buffer and the service waiting 
probability of packet. In this work we propose a method for approximating the distribution 
function of the states of the system and on its basis, a formula for calculating the service 
waiting probability in a single-channel system with a self-similar traffic. 
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I. Introduction 
In packet networks, the flow of packets is formed by a plurality of requests sources 

for the provision of a network of services and network applications that provide video, data, 
speech and other services. The sources of requests involved in the process of creating a 
packet stream differ significantly in values of the specific intensity of the load. The intensity 
of the load of the resulting packet stream at any given time depends on what applications 
are served by query sources and what is the ratio of their number to different applications. 
Therefore, packet flows (traffic) significantly differ from the Poisson flow model where the 
exponential distribution function of the time interval between the moments of packet 
arrival.  

The structure of traffic is also influenced by the technological features of the used 
service algorithms. For example, if the service is provided by multiple applications or in the 
used protocols have the repeated transfer of incorrectly accepted packets, then the 
moments of packet requests are much correlated. Because of this, in the process of service, 
the output streams vary considerably and in the resultant traffic there are long-term 
dependencies in the intensity of the arrival of packets. In this case, traffic is no longer a 
mere sum of the number of independent stationary and ordinary streams, such as Poisson 
flows of telephone networks. In multiservice packet switched networks, traffic is 
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heterogeneous, and streams of different applications require a certain level of service 
quality. In these conditions, the flows of all applications are provided by a single 
multiservice network with shared protocols and management laws, even though the sources 
of each application have different rates of information transmission or change it during the 
communication session (maximum and average speed). As a result, the combined packet 
stream is characterized by the so-called "burstiness" of traffic with random frequency and 
duration of peaks and recessions. For such packet traffic is characterized by strong 
unevenness of the packets  arrival intensity. Packets are not smoothly dispersed on different 
time intervals but grouped in "packets" on the same intervals and are absent or very small 
at other intervals of time [1]. 

For packet networks, a mathematical model of self-similar traffic is used, but there is 
no reliable and recognized methodology for calculating the parameters and characteristics 
of the quality in mass-servicing systems in the context of servicing such traffic. With the 
growth of the degree of self-similarity of packet traffic, the quality characteristics in the 
system significantly deteriorate compared with the maintenance of traffic of similar 
intensity, but without the effect of self-similarity. 

The estimation of service quality characteristics (QoS) in a one-channel system with 
an infinite queue for self-similar traffic (model fBM/D/1/∞) often reduces to the estimate of 
the Hurst exponent H of self-similar traffic, after which according to the known Norros 
formula, the calculation of average number of packets in the system N [2 ] Other 
characteristics such as the average number of packets Q in the queue, the average packet 
time in the system T, and the average delay time of packets in the system of W are then 
calculated based on their known functional relationships from the calculated mean N [3]. 
However, such an algorithm from the Hurst exponent H does not allow to be calculated 
such characteristics as the service waiting probability for packet and the average packet 
delay time of tq in the buffer memory. 

The purpose of this work is to establish an approximating function for the 
distribution of states in a one-channel system with an infinite queue and self-similar traffic 
at the moment of packets receipt, and on the its basis made receiving the formulas for 
calculating the service waiting probability for packet and the average delay time of packets 
in the cumulative buffer. 

 

II. Calculation method 
In the mathematical models of the Queuing System (QS), the type of input stream, 

the scheme of QS and service rule are considered. In this case, an input stream with self-
similar properties is considered, in which, for example, Pareto or Weibull distributions [1] 
are used to describe the distribution of the time interval between the moments of packets 
arrival. The service rule of packets in the flow is without losses but with the possibility of 
waiting in the infinite queue, and the rule of servicing packets from the queue - according 
to the rule of FIFO (firs input - firs output). The QS scheme is single-channel. 

The calculation of the service quality characteristics in the QS is always performed 
based on a mathematical description of the system response to the input packet stream. 
Under the reaction of the system, they understand the states that, due to the random nature 
of the packets flow, are mathematically described by the probabilistic distribution function 
of the number of occupied channels and waiting places Pi, where i is the number of packets 
in the system (in channels and in the queue). This function coincides with the distribution 
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function of the number of packages in the system (serviced and waiting in the queue), since 
each packet occupies one channel in system or one place in a queue at the waiting. 

In the case of the simplest Poisson model of flow in a QS with a loss or waiting 
(queue), the states of the system are described by one of the known Erlang distributions 
(i.e., the first or second distribution of Erlang, respectively) [3]. Finding the system state 
distribution function for more complex stream models is a very difficult task, and therefore, 
for this flow model, there are not of similar solutions. 

The utilization factor of ρ is defined as the ratio of the intensity of the input flow of 
requirements λ to the service intensity μ. For a single-channel system in any packet stream 
(arbitrary distribution G of the time interval between the arrival times of packets) ρ = 1 - p0, 
where p0 is the probability of a system's freedom or the state of the system p0 (system have 
0 packets). Thus, ρ coincides with the probability of the employment of the system or Pe = ρ. 

For the Poisson flow of packets, the service waiting probability of Pw coincides with 
the probability of employment Pe [3, p. 49] of the system and therefore for a single-channel 
model, for example, M/G/1/∞ (for any law of service distribution) we get Pw = Pe = ρ. 

Taking into account packets in queue in stationary mode there is a stationary 
distribution of system states or number of packets in the system pk, where k is the number 
of packets (state p0 - in the system 0 packets, state p1 - busy single channel, state p2 – 
occupied channel and one place in a queue, etc). Distribution pk does not depend on the 
moments of the packets arrival into the system (does not depend on whether the packet 
arrives or does not arrive in the system). For the Poisson flow of packets this distribution is 
sufficient to calculate the service waiting probability Pw, since 
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For arbitrary packet flows, for example, the G/G/1/∞ system, Pw ≠ Pe and this formula 
can only be used if the known distribution rk of the number of packets in the system at the 
moment of receipt of new packets, where k is the number of packets. The pk distribution 
differs from the rk distribution by the fact that p0 = 1 - Pe (or p0 = 1 - ρ), while r0 = 1- Pw. From 
this it follows that the packet should expect service with the probability Pw = 1 - r0. For the 
M/G/1/∞ system, the equation pk = rk is executed and therefore the pk distribution [3] is used 
instead of rk distribution. 

Consequently, in the case of a self-similar packet flow model with time interval 
distribution between the moments of packet arrival according to Pareto or Weibull's laws, 
the waiting probability calculation for service is possible if it is known system states 
distribution or the distribution rk of packets number in the system at the moment of receipt of 
new packages. 

 

III. Results and discussions 
In Figure 1 for  a one-channel system with an infinite queue by a dashed line shows 

the distribution function of the number of packets in the system pk, which does not depend 
on the moments of the arrival of packets into the system, and a continuous broken line shows 
the distribution function rk of the number of packets in the system at the moment of receipt 
of new packets. These functions were obtained using a computer simulation program of self-
similar traffic [4]. 
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It should be noted that in the self-similar traffic of packet communication networks 
there are large breaks (pauses) in the arrival of packets into the system [3], and therefore 
the probability p0 (for this example p0 = 0,495) is the largest in the distribution function of 
the system states. 

 

Figure 1. – Distribution functions of the system states and its approximation. 
 

From Figure 1, we see that the bulk of the distribution function of the number of 
packets in the system at the moment of new packets receipt rk without probabilities r0, r1 
and r2 is sufficiently qualitatively consistent with the approximating function Bi (shown by 
the points), as proposed by the following expression: 
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where T – the average stay length of packets in the system. 
In formula (2), the approximating function Bi is an exponential function with a 

distribution parameter 1 / T, ρ – is load of the system or utilization factor (0 < ρ < 1). 
In the non-Poisson flow with a Generalized distribution G of the time interval 

between the moments of arrival of packets (for example, the self-similar flow of type fBM), 
the service waiting probability in a single-channel system is calculated by formula (1), but 
necessarily with the use of the distribution function rk of the number of packets in the 
system at the moment of new packets receipt: 
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But, as it can be seen from Figure 1, if the probability B0 from the approximating 
functions (2) is directly calculated instead of the true r0, then a big error will be obtained. 
Therefore, the error of calculating the service waiting probability by the formula Pw = 1 - B0 
will be the same large error. Consequently, according to expressions (3) and (2), the service 
waiting probability in a one-channel system with an infinite queue of type fBM/G/1/∞ will 
be defined as follows: 
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Thus, if it is possible to set the average stay length of packets in the system T or 
after determining the Hurst exponent using the Norros formula [2] to calculate the upper 
limit of the possible average N, then using the approximation (2) and using formula (4), one 
can calculate the waiting probability Pw of the packet. Since in the approximating 
distribution (2) parameter 1 / T = ρ / N [3], where N is the average number of packets in the 
system, then for practical calculations in the distribution (2) we can specify not 1 / T  but 
ρ / N, where ρ – is load of the system or utilization factor (0 < ρ < 1). 

 

Conclusions 
In the conclusions, it should be noted that imitation modeling [4] confirmed the 

correctness of this calculation method of service quality characteristics in the system 
fBM/G/1/∞ with self-similar traffic. At the same time, the difference between the simulation 
and calculation results does not exceed 5% when the system loads in the range 0.3 < ρ < 1 
(with ρ ≥ 0,6 error less than 2%) and the change in the Hurst exponent values in the range 
0.5 < H < 0.9 [5]. 

At that, as it can be seen from Figure 1, the result of calculating the service waiting 
probability Pw will always be somewhat overestimated, since the approximating function (2) 
also gives somewhat inflated results relative to the real probabilities r1 and r2, which are 
included in the sum of the calculation formula Bk (4). For example, Figure 1 shows that the 
probability r0 = 0.153 and therefore the real service waiting probability Pw = 0.847. The 
calculation of this probability by the formula (4) gives the value Pw = 0.885, which is only 
4.7 % higher than the real value of the service waiting probability. This is the case when ρ = 
0.5, with ρ ≥ 0.6 the error less than 2% and so on. 

From the known formula W = T - 1 the average delay time of packets in the system 
W is calculated, after which one can calculate the average delay time of packets in the 
cumulative buffer tq = W / Pw. 
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