
Computer science

PARALLEL WEB SEARCH: MODERN APPLICATION ARCHITECTURES

Mihai Mocanu1, Mihai Dorobanţu1,2 and Mihai Popa1

1 Department of Software Engineering, School of Automation, Computers
and Electronics, University of Craiova, Romania, E-mail: mocanu@software.ucv.ro

2 Health Information Systems Enterprise Architecture Division, Imaging Science
 and Information Systems, Georgetown University, Washington, D.C., USA

ABSTRACT

In virtual information world, containing billions or more Web pages, search engines is still the main

mechanism for accessing information. Although today the main utility of the Internet is for

interactive access to documents and applications, and in almost all cases, such access is mediated by

human users (typically working through Web browsers or other interactive front-end systems), the

situation is constantly changing. This paper is part of a more extensive work, in which we try to find

appropriate ways to deploy and use applications as remote services, over the Internet. In particular,

we are interested in visualization tools and distributed programs, as front-ends for distributed

databases. We would like to treat applications, to a large extent, as “black boxes”, and “wrap” them

(i.e. into Java Classes and other structures), in order to enable their manipulation using increasingly

available Web and Grid services infrastructures.

KEYWORDS: meta-search, parallel search, Web Service (WS), SOA, SOAP.

INTRODUCTION

An important issue in the design of global Internet systems is the presence of many models for data

exchange, indexing, searching, and retrieval. Rapid advances of computer network technologies

made more information sources accessible, and the vast amount of data available on the Web has

set out the development of many approaches for heterogeneous data retrieval and information

extraction, in which human intervention is minimized and application parallelism and

complementarities are inherent. The Web is constantly extended to support communication between

applications and there is an increasing interest in establishing services infrastructure for searching

existing data and publishing new data in distributed, heterogeneous sources of information across

the Internet. This paper describes the evolution of software architectures for searching distributed

heterogeneous sources of information, in particular Internet sources, and proposes extensions to

traditional approaches based on modern technologies. Our main goal here is to give, an overview of

Solution space
[technologies  basic requirements]

Functional requirements

159

mailto:mocanu@software.ucv.ro

Microelectronics and Computer Science, 2005, Chişinău, Republic of Moldova

WSs and to offer solid arguments for their increasing use in applications – in spite of some

drawbacks existent today. Focus will be maintained in this paper on WSs – although an implicit

relationship with Grids still exists.

PARALLEL WEB SEARCH: THE PROBLEM

Integration of heterogeneous information sources has been one of the most important issues in

recent advanced application environments. In particular, with the broad acceptance of the Internet,

integration of the Web and other information sources has been strongly required. Users’ potential

benefits are obvious, in two directions: one is being able to issue a single query and to obtain

answers as fast as possible, through its parallel, asynchronous execution; the other is using a single

interface and obtaining appropriate information from multiple sources instead of sequentially search

source after source each with their own interface.

There are, of course, different approaches, that could be denoted as more physical or virtual. In a

physical approach, data originating from local and remote sources or databases (DB) are integrated

into one single new data source on which all queries can operate. In a virtual approach (also

referred to as multi-database system in literature), data remains in the original local or remote

sources; a layer is built on top of them, which takes the query from the user, processes it, sends

(parts of) it to the appropriate sources and presents the results. Thus, queries operate directly on

them and data integration has to take place during query processing.

There are also two possible choices on physical systems. One is to migrate data from the local

systems to a Universal DBMS able to handle all (or many) types of information; the main

drawbacks of this approach is that existing applications for the local systems have to be rewritten

for the new database and the process of data migration can be very expensive, since the old data has

to be transformed. In the other approach data from the local sources are imported into one DBMS,

the data warehouse - the difference to the previous case is that the underlying data sources are still

operational, so in fact the data is replicated. The warehouse data is typically not imported in the

same form and volume as it exists in the local data systems. It may be transformed, cleaned and

prepared for certain analysis tasks, like data mining and OLAP (Online Analytical Processing).

Data warehouses often do not make the most recent data available, since they are not usually

updated immediately after a local data source has changed. With respect to querying, both major

approaches have the advantage that real DBMS functionality is available, so only precise searching

is supported, and the overhead for building such systems is important.

Three major methods can be distinguished. Meta-search engines provide for requesting several

search engines and composing combined response, and have gained importance regarding querying

of unstructured sources mainly due to the popularity of the Web. Their main focus lies with the

Solution space
[technologies  basic requirements]

Functional requirements

160

Computer science

combination of results, so they are most suitable for unstructured data and support imprecise search.

Federated Database Systems (FDBS) try to give the user the impression of working with one

DBMS, but in fact the data is managed by several individual DBMS. Since a FDBS still provides

typical DBMS functionality, queries support only precise search. FDBS may also be regarded to

follow the physical approach because they may store parts of the underlying data in an internal

repository. However, this materialization is only partial and/or temporary (i.e. to enhance

performance). In Mediation Systems, query processing is very similar to meta-search, the difference

is that data in the underlying sources may be heterogeneous, i.e. structured, semi-structured or

unstructured.

SOA (SERVICE-ORIENTED ARCHITECTURE): THE MODERN SOLUTION

Problems summarized above make the retrieval of Web information a complex process. An

application that obtains Web pages must remove from them irrelevant information such as banners,

pictures, etc. Parsing a Web page to get only needed data involves writing particular code (a parser)

for each Web site - data format is the biggest problem in the process of extracting information from

Web sites (because Web sites are made for humans they suffer continue changes without any

notification). Other problems are encountered on the server side - the use of Web sites by

applications can cause the overload of the Web server, and to solve this case Web site owners have

blocked the access of “simulated humans” to their pages.

WSs and Grid services are a promise to break the inconveniences through their increasing use in

applications. The difference from the above solutions consists in that in most of the preceding

systems ad-hoc solutions were applied. With these services, we have the promise of standardization,

lowering the barrier to application integration.

Even though WSs are new, from an architectural perspective, they are based on established

middleware design principles for application-to-application communication. From a historical

standpoint, WSs represents the convergence between the service-oriented architecture (SOA) and

the Web, through a specific protocol (SOAP). The use of the term refers more correctly to the

architecture, standards, technology and business models that make WSs possible. In a simple

definition, in agreement with many others given by companies that developed and used them (such

as IBM, Microsoft or Sun), WSs are loosely coupled, publicly available components that

communicate through standardized XML messages and interfaces. Loosely coupled means that WSs

and the programs that invoke them can be changed independently of each other. As well as a Web

Browser that communicates with a Web Server without knowing what is on the other side, the WSs

Server is not interested in the kind of client (a Web Browser client or non-browser client) that uses

it. This agreement also implies that WSs are platform independent. The WSs Server can be a Java-

Solution space
[technologies  basic requirements]

Functional requirements

161

Microelectronics and Computer Science, 2005, Chişinău, Republic of Moldova

based implementation (Apache Axis, Java version) running on a Linux OS and the client can be

a .NET application running on an Windows platform. Publicly available means that a WS’s

behavior, its input and output parameters, and how to bind to it can be obtained by everybody

through its description [1].

Grid services are related to grid computing, which is distributed computing over the global network

enabled by open standards. Grid standardization has also been an important issue over the last

years, and specifications are covered in bodies such as: Global Grid Forum (GGF), WWW

Consortium (W3C), or Internet Engineering Task Force (IETF). GGF, especially, has played a key

role in developing and articulating the Open Grid Services Architecture (OGSA), which defines the

Grid community’s “guiding principles” for WSs/ Grid convergence [2].

Even if implementing a WS can be a complex job for an important company, the revolutionary part

of this approach is the separation of the human part (Web pages) from application part (WSs).

Applications may use a WS and the humans will continue to use the Web site. Service descriptions

(in a WSDL file) can be publicly available and it will make the communication between any

application and the WS server very easy to realize.

The illustrative application described in this section is intended to support our allegations on the

commodity and robustness in using WSs to implement parallel Web search. We built it as a

demonstrative meta-search engine, using Apache Axis. Axis is essentially a SOAP engine, a

framework for constructing SOAP processors such as clients, servers, gateways, etc [3]. Apart from

being (only) a SOAP engine, Axis also includes: a simple stand-alone server; a server which plugs

into servlet engines such as Tomcat; extensive support for the WS Description Language (WSDL);

emitter tooling that generates Java classes from WSDL (WSDL2Java tool); and a tool for

monitoring TCP/IP packets (TCPMon tool). The application introduces a new level (middleware)

between humans and Web sites. Generally, the scope is to refine the information provided to

humans (e.g.: meta-search engines) or to collect important amounts of data for statistics,

predictions, etc. We have chosen to implement a meta-search engine because it can face all

problems described above: it must parse the results obtained from Web search engines and nobody

can guarantee the format of data will be the same next week or month. Our very basic meta-search

engine is based on two WSs provided by two important companies: Google and Amazon. We have

chosen these WSs because they are freely available at this moment on the Web. Using only the

descriptions of these two WSs we could implement a client for each of them, and a common user

interface, showed in Fig. 1.

Solution space
[technologies  basic requirements]

Functional requirements

162

Computer science

Fig. 1. A Metasearch Engine based on Web services

The descriptions of these WSs are too big to be put here but they can be downloaded and examined

from the Amazon or Google web sites [4] [5]. The implementation did not request any code for

parsing the data because it did not deal with HTML files. It obtained from Google and Amazon only

the useful information in an XML format. The XML messages encoded as SOAP Messages that are

returned from these WSs contained detailed information for each result. In fact, all information that

is available to users on the Web site can be accessed through the WS. The operations deployed in

these WSs are complex, we used only a small part of them.

CONCLUSIONS

An application-centric Web is not a new notion. For years, developers and companies have created

programs and Java servlets designed primarily for use by other applications (i.e., search systems or

news retrieval systems). The interaction of applications with Web pages for getting useful data is a

complex issue and raises multiple problems, due to multiple and various factors: firstly, because

Web sites are made for human users not for software applications; then, because precision of search

is unavoidably low, as a consequence for the simplicity of home pages “registration” for the whole

Web; third, because of the lack of standardization in the field; and, last but not least, because of the

unwanted delays in performances, in both the development and execution of applications, either in

the communications or deployment phases or during resource classification.

Using WSs made the implementation of a meta-search engine relatively easy to do because all

results are obtained in a precise format described by WSDL files and so the data format issue was

Solution space
[technologies  basic requirements]

Functional requirements

163

Microelectronics and Computer Science, 2005, Chişinău, Republic of Moldova

completely eliminated. The implementation did not request any code for parsing the data because it

did not deal with HTML files. Another big advantage of this approach lies in the automation of the

process: once implemented the application can be perfectly functional while there is a WS running.

The maintenance of the code may be very low or even null.

REFERENCES

[1] Cerami, E., Web Services Essentials: Distributed Applications with XML-RPC, SOAP, UDDI
& WSDL, O’Reilly Publ., 2002

[2] Foster, I., C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. Int. Journal Supercomputer Applications, 15(3), 2001

[3] Gibbs K., B.D. Goodman, and E. Torres (2003), Create Web services using Apache Axis and
Castor, http://www-106.ibm.com/developerworks/ webservices/ library/ws-castor/

[4] Web site: Amazon, http://soap.amazon.com/schemas2/ AmazonWebServices.wsdl
[5] Web site: Google, http://www.google.com/apis/

Solution space
[technologies  basic requirements]

Functional requirements

164

http://www.google.com/apis/
http://soap.amazon.com/schemas2/
http://www-106.ibm.com/developerworks/%20webservices/%20library/ws-castor/

