NANOTECHNOLOGY AND ITS APPLICATIONS IN MEDICINE

O. Lupan

Department of Microelectronics and Biomedical Engineering, Technical University of Moldova, Chisinau, Republic of Moldova *E-mail: oleg.lupan@mib.utm.md

Nanotechnology advances the medicine due to ability to create new nano-materials and nano-devices with dimensions less than 100 nm. Various nanotechnological approaches allow manipulation of matter on an atomic or molecular scale, thus making possible synthesis of materials with different properties as a result of their low dimensions, as follows new applications from bulk materials.

Gas sensors and biosensors based on oxide semiconductors are widely investigated in the last decade [1-11], including bimedical – health field too. Devices with nanoscale dimensions (nanodevices) are of greater interest due to possibility to integrate it in large scale, arrays and versatile applications. Such nano-devices and even micro-devices showed already in laboratory conditions a great potential for the development of biomedical applications, i.e. human breath analysis, gas detection, medicine-drug delivery, etc.. As an example, it can serve clinical research studies showing that diabetes patients have higher concentration of acetone vapour in their breath, compared to healthy persons [3]. As an example, developed acetone vapour sensors with nanoscale dimensions are of interest in some healthcare cases.

Another field of applications is anti-bacterial activity of oxide semiconductors, which can be controlled and enhanced by changing its morphology, dimensions and other properties. This field is followed by antiviral and antitumor applications on nano-materials.

Drug delivery is another field for nano-materials and for nano-devices applications. As an example of nanotechnology results are micro- and nano-tubes of oxide semiconductors or rolled graphene/nanographite for versatile applications.

The current report will summarize some advanced oxide applications of nanotechnology for medicine and healthcare.

Acknowledgements. This work was partially supported by the Tempus Project No. 543904-TEMPUS-1-2013-1-GR-TEMPUS-JPCR.

- [1] V. Cretu, V. Postica, A.K. Mishra, M. Hoppe, I. Tiginyanu, Y.K. Mishra, L. Chow, N.H. de Leeuw, R. Adelung, O. Lupan, J. Mater. Chem. A. **volume 4** (2016) 6527-6539.
- [2] V. Postica, I. Hölken, V. Schneider, V. Kaidas, O. Polonskyi, V. Cretu, I. Tiginyanu, F. Faupel, R. Adelung, O. Lupan, Mater. Sci. Semicond. Proc. **volume 49**, (2016) 20-33.
- [3] I. Hölken, G. Neubüser, V. Postica, L. Bumke, O. Lupan, M. Baum, Y.K. Mishra, L. Kienle, R. Adelung, ACS Appl. Mater. Interfaces. **volume 8**, (2016) 20491-20498.
- [4] O. Lupan, V. Postica, V. Cretu, N. Wolff, V. Duppel, L. Kienle, R. Adelung, Phys. Status. Solidi RRL. volume 10, (2016) 260-266.
- [5] H. Papavlassopoulos, Y. K. Mishra, S. Kaps, I. Paulowicz, R. Abdelaziz, M. Elbahri, E. Maser, R. Adelung & C. Röhl, *PloS one*, **volume 9** (2014) e84983.
- [6] Y. K. Mishra, S. Kaps, A. Schuchardt, I. Paulowicz, X. Jin, D. Gedamu, S. Wille, O. Lupan, R. Adelung, *KONA Powder Part J*, volume 31 (2014) 92-110.
- [7] J. Davies, D. Davies, Microbiol. Mol. Biol. Rev, volume 74 (2010) 417-433.
- [8] M. Konop, T. Damps, A. Misicka, L. Rudnicka, Journal of Nanomaterials, volume 4 (2016) 10.
- [9] G. Applerot, A. Lipovsky, R. Dror, N. Perkas, et al., Adv. Funct. Mater. volume 19 (2009) 842–852
- [10] Y. K. Mishra, G. Modi, V. Cretu, V. Postica, O. Lupan, T. Reimer, I. Paulowicz, V. Hrkac, W. Benecke, L. Kienle, R. Adelung. *ACS Applied Materials & Interface*, **volume 7** (2015) 14303 14316
- [11] T. E. Antoine, Y. K. Mishra, J. Trigilio, V. Tiwari, R. Adelung, D. Shukla, *Antiviral Research*, **volume 96** (2012) 363–375.