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INTRODUCTION 
 

The analysis of a system, which takes into 

account all the operating parameters, is difficult, 

being almost impossible from practical point of view. 

That is way, a series of hypotheses concerning the 

geometry and the constitutive materials of the system 

are admitted. There are also adopted assumptions for 

phenomenon causes. This procedure leads to two 

types of models: the cause model and the system 

model. 

The models can be analytical models or 

numerical models and they consist in continuous or 

discrete virtual systems. 

The most powerful numerical method for the 

analysis of both structural deformability and 

conductive heat transfer is the finite element method. 

The present paper approaches the perfect 

similarity between the problem of axial elastic 

deformability for a finite element of bar type (1D) and 

the diathermancy problem for the same finite element. 

 

 

1. MATRIX EQUILIBRIUM EQUATION 

FOR OF AN AXIAL ELASTIC 

DEFORMABLE BAR 
 

The finite element of bar type is the classic 

one, having two nodes at its ends, at each node the 

nodal displacement along x  axis being defined, xid  

(vector) and the corresponding nodal force, xif  

(vector). There are defined: 

        21 xx

T

x ddd   - the vector of nodal 

displacements for axial elastic deformable element, 

        21 xx

T

x fff   - the vector of nodal forces 

for the axial elastic deformable element. 

For any current section of the element, 

located at a distance x  from the axis origin, Hooke’s 

law can be expressed. It states the relation between 

the axial stress, )(xx /axial force )(xf x  and the 

corresponding displacement gradient )(xg
xxd : 
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or the equivalent relation: 
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The displacement field is: 

 

       T

x xxxd 2121 1)(   = 

                                  (3) 

          )(x  
 

For the element nodes can be shortly written that: 
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where 
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and then: 
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where )(xN i  represent the shape functions, that for 

type of element have the form 
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and their derivatives with respect to x  have the 

expressions: 
 

               
l
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The displacement gradient function can be 

related to nodal displacements. 
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By using Hooke’s law it can be stated: 
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where, by expansion, rearrangement, and substitution 

of known terms, it is obtained: 
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that represents the matrix equilibrium equation for an 

axial elastic deformable bar. It can be shortly 

expressed as: 
 

                                  xx fdk                        (13) 
 

where  k  is the stiffness matrix of the element. 

Equation (13) has been obtained by considering that 

the axial force at node 1 is a negative one, while the 

axial force at node 2 is a positive one. 

 

2. MATRIX EQUILIBRIUM EQUATION 

FOR A DIATHERMIC BAR 
 

 

The adopted finite element is a uni-

dimensional one, having the cross – sectional area A. 

At the nodes, which are provided at the element ends, 

the temperatures iT  are defined (a scalar quantity) 

and the corresponding heat flow, xiQ  (a vector). 

There are expressed: 

   21 TTT
T
 -the vector of nodal 

temperatures for the diathermic element and 

   21 xx

T

x QQQ  -the vector of heat flow for 

the same element. 

For any current section of the element, 

located at a distance x  from the origin, Fourier’s 

relation can be written and it states the relation 

between the heat flux, )(xqx / heat flow, )(xQx  and 

the corresponding temperature gradient, )(xg xT . 
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where x  represents the thermal permeability 

characteristic. 

The equivalent relation is: 

 

                        )()( xgAxQ xTxx     (15) 

   

The function of temperature variation along 

the element is a first degree function: 
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       (16) 

           )(x       

 

 The temperature function can be related to 

nodal temperatures: 
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It results that: 
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So: 



44        Formal Similarities Between One - Dimensional Finite Elements (1D) Used in the Deformability          

 

      

           

   T
TTxNxN

TxNTAxxT

2121

1

)()(

)()()(








  (19) 

 

where )(xN i  are the shape functions that for an 

element with two nodes have the following form: 
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and their derivatives with respect to x  have the 

expressions: 
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The function of temperature gradient is 

expressed in terms of nodal temperatures: 
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By using Fourier’s relation, it is obtained: 
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which, by expansion, rearrangement and substitution 

of known terms becomes: 
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that represents the matrix equilibrium equation of the 

diathermic bar, expressed in terms of temperatures, 

and which can be shortly expressed: 

                                   xQT                          (26) 
 

where    is the permeability matrix of the 

diathermic bar. 

Equation (26) has been obtained by 

considering that the heat flow which enters node 1 is 

positive, while the heat flow which exits node 2 is 

negative. 

 

 

3. CONCLUSIONS 
 

By comparing the matrix equilibrium 

equation (12), stated for the axial elastic 

deformability case, with equation (25), valid for 

diathermancy case, it can be noticed that they have 

the same shape. In the second mentioned equation, 

the longitudinal modulus of elasticity xE  that occurs 

in the first equation, was substituted by the thermal 

permeability characteristic, x . 

Taking into account that the two equilibrium 

equations are identical from a formal point of view, it  

can be concluded that these procedures concerning 

the elastic deformability analysis can be also applied 

for heat transfer problems, at least for the stationary 

case. 

Such formal similarities between different 

phenomena offer to the analysts the possibility to 

perform analogies, but also to use and / or extend 

design methods of apparently different engineering 

problems. 

The existing soft for deformability analysis 

could be easily adapted for heat transfer problems, but 

also for other problems, as fluid flow or pressure. 
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