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INTRODUCTION 

In this article we continue the examination 

of interactions between waves in ideal medium. The 
sense of these examinations consists in development 

identical approach for description the behavior of 

waves, and particles. In the previous article [1] we 
have shown, that, the stable standing waves interact 

as the particles in case of elastic collision, and the 

conservation laws of energy and impulse follow 

from the undular nature of particles. Now we 
propose to investigate the interaction process 

between the stable standing wave and a traveling 

wave, and find the circumstances in which takes 
place the quantification of traveling waves. 

 

1. WAVES AS INSTRUMENTS OF 

LENGTH AND TIME 

MEASUREMENT 

Let's suppose that there is a standing wave-

object (fig. 1), described in laboratory system by 

expression   tkrrAa sinsin .              (1) 

Where k- is the a wave number and - frequency. 

 
 

 

 
 

 

 
 

 

 

 
The projection of the wave (1) on the axis x 

will be:    tkxxAa sinsin .  (2) 

In the reference frame, which moves with 

velocity v along axis x relatively of laboratory 
system, the same wave (2) will be described by 

expression [2]. 
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We shall be convinced of it. If to compare (3) with 

(2), we see that, in (3) the value 
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same role as k in (2). Both expressions cos(kx) and 
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space, which serve as natural unites or standards of 

length. 

Similarly, the expressions cos(t) and 
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amplitude in a fixed point of laboratory and moving 
systems accordingly, in dependence from the time 

and serves as the time standards. Hence the value 
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in moving system have the same role as  in 

laboratory system. 

The ratio of wave-object displacement, 
during a period to this period represents the quasi-

standing wave velocity:        
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It is easy to be convinced of it, by following directly 

the evolution of wave - object. 
 

2. INTERACTION OF THE 

TRAVELING WAVE WITH 

STATIONARY STABLE WAVE-

OBJECT 

Now lets suppose that the wave-object is 
stable. It means that, the wave-object in the own 

reference frame remains always invariant, 

independent of exterior actions and is described by 
expression (1) and (2). The own system we call a 

reference frame in which 1=2 and k1=k2. 

 The incident traveling wave having the 

view    xktAa iii  cos ,              (6) 

will try to deform a wave (1) as is shown in a fig. 2. 

But as, the wave-object is stable, by definition, it 
can not be described in the own system by other 

expression, than (1) or (2). Hence, the wave-object 

can't remain fixed in laboratory system. It will be 
forced to move, hence this wave in laboratory 

system will be described already by expression (3). 

a y 

x 
Figure 1. Wave described by expression (1)   

                in two-dimensional representation. 
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However in own system it will continue to be 

described by expression (1) by virtue of its stability. 

As was noted above, time and lengths 
standards, defined by frequency and wave number, 

in expression (2) and (3) differ. Thus, under action 

of a traveling wave, the wave-object will change its 
standards of length and time to be adapted, to new 

conditions, created by presence of the incident 

wave. Such incompatibility of wave-object with the 
incident wave lead to changes of wave-object state. 

It means wave-object will be transferred in other 

frame of reference. 

It is possible to assume, that the adaptation 
of wave-object will happen, when the change of 

frequency of wave-object will be equal to change of 

frequency of the incident wave or more simple 
when the change of frequency of wave-object will 

be equal to frequency incident wave. It means, that 

the incident wave does not influence wave-object, 
because the standards of the incident wave enter in 

a composition of standards of a wave-object. It 

actually so, if to recollect a principle of identical 

change of frequencies and wave numbers of 
interacting waves, which we have proved in the 

article [1], i.e.  i  .  (7) 

 

 
 

 

 

 
 

 

 

 
 

 The standing wave (2) represents a 
superposition of traveling waves pair from the point 

of view of own frame of reference. The expression 

(3) describes the same wave, but in a frame of 
reference, which moves concerning a own frame of 

reference with velocity v. The link between 

frequencies and wave numbers measured in these 
two frames, is defined by the Doppler's formulas for 

longitudinal effect: 
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Where 
c

v
 - is the normalized velocity of 

relative motion, between two systems. The Doppler 

effect is a consequence of Lorentz transformations, 

hence, it is an organic part of our model, in which 

both, the tools and the explored objects, represents 

the waves in same medium [2, 3]. 
 By substitution the expressions (8) and (9) 

in (4), we shall receive a relation between the 

oscillation frequency of wave-object  in own 

system and its frequency ', measured in stroked 

system which moves:    
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If are given the frequencies of wave-object before 

interaction and after interaction ', and the wave 

incident frequency i, we can determinate the 

wave-object velocity after interaction. By 

substituting named values in (7), we shall receive: 

  ''ii .            (11) 

In the case of total absorption 0'i . Hence 

  'i ,       (12) 

and considering (10)   
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Solving this equation, we shall receive the velocity, 

gained by wave-object as a result of interaction with 
the incident wave. 
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The same formula will be obtained in case 

of interaction between the quantum of light and 
elementary particle. Really, the law of conservation 

of energy at interaction of a light quantum with a 

fundamental particle is described by the equation: 
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This is equivalent to expression (14). By using this 
formula it is possible, for example, to calculate 

velocity, gained by the free electron after action 

with "light quantum" having the frequency i.  
Now let's consider the case, more general, 

when the front of an incident wave is not 

homogeneous. Hence, the action of incident wave is 

asymmetrically relatively to center of wave-object. 

In this case, after interaction the wave-object will 

move not along the axis x, but under some angle  
relatively to x. Simultaneously should deviate and 

incident wave on some angle , by virtue of a 

principle of identical change of wave numbers of 

interacting waves, (fig. 3). In mechanics terms this 

Figure 3. The wave (1), under interaction of a 

wave (6) in two-dimensional representation 

a y 

x 
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case corresponds to a not central collision of two 

balls.  

 
 

 

 
 

 

 
 

 

 

 
 

 

 
At first we shall find out, how the 

frequencies and wave numbers changing at 

interaction. Let's suppose that, before interaction, 
the wave-object is resting in laboratory system and 

is described by expression (1). Then, before 

interaction, its frequency will be , and the 

resulting wave number is equal to zero 0k . For 

incident wave (6) frequencies before interaction is 

equal i, and its wave number 

c
i

i
i

c
k 

 .          (15) 

Accordingly to expression (10) the frequency of 

wave-object after interaction   
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Hence, the change of wave-object frequency as a 

interaction result:   
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Analyzing the change of wave numbers, it is 

necessary to mean that, it is vectors. In the own 

frame of wave-object, the wave numbers vectors of 
traveling waves-components have opposite 

directions and modules equal. Therefore, the 
resulting wave number of wave-object in state of 
repose    kr = 0.            (17) 

After interaction, the wave - object will 

gain some velocity v, and will be is described by 
expression (3) in which the modules of wave 

numbers of two components are not equal. The 

resultant wave number kr' of wave-object is equal to 

half of difference of waves numbers components. In 
view of expression (9), the resultant wave number 

of moving wave-object will be: 
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Thus, as a result of interaction, wave number of 

wave-object will change on 

rrr kkk  ' ,           (19) 

or in view of expressions (17) and (18): 
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Accordingly with the formula (15), to this value of a 

wave number correspond some value r, 
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or, taking in account (10):     ' r .         (22) 

Then the following difference can be conversed:  
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From here, using the formula (22), we shall receive  
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Now we shall analyze directly the 
interaction between the incident wave and the 

wave-object. Using the principle of identical 

frequency change of interacting waves, proved by 

us before, we can note:     i              (25) 

or   '' ii               (26) 

As the wave number is a vector, the 
principle of identical change of wave numbers of 

interacting waves should be noted separately for 

projections to each axis. This will look as follows: 
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Let's raise to the second power the expressions (27), 

(28) and sum it, we shall receive: 
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Figure 3. A wave (1), under interaction of 
a non uniform traveling wave. 
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In correspondence with expression (24), the left part 

(31) is equal to zero, so: 
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Taking into account, that 
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 , the expression 

(32) will be copied as:   cos1'  ii . (33) 

Where: i and i' are waves length of incident and 

diffused traveling waves, and  is wave length of 

wave-object "resting" in laboratory system. If to 
designate the change of length of the traveling 

wave, occurred as the result of its interaction with a 

standing wave as iii   ' , that we shall 

receive the Compton's formula: 

2
sin2 2   i .  (34) 

 The expression (34) was obtained without 
any suppositions, concerning the corpuscular 

properties of waves and without such concepts as 

mass, impulse or energy. By thus is shown, that the 
Compton's effect describe the interaction between 

standing wave and traveling wave. 

If i>>, the interaction will be practically 

always central. In this case the change of frequency 

of wave-object will be maximal and will be equal to 

frequency of the incident wave i. Or else, the 

wave-object will take the greatest possible quantity 
of energy from the incident wave.  

In all analyzed cases of interaction between 

the waves, the result depends only from a relation of 
frequencies of interacting waves and does not 

depend on their amplitude. That is as accepted in a 

quantum mechanics and proved experimentally. 
From the demonstrations above mentioned, is 

visible, that the quantification of a traveling wave, 

in particular of light, happens in the moment of 

interaction with the stable standing wave.  
 

3. THE LOCALIZATION AND 

PROBABILITY OF WAVES 

INTERACTION 

Other interesting aspect linked with 

interaction between the traveling wave and the 

stable standing wave is a problem, about where this 
interaction happens and also what is the probability 

of this interaction.  

In the case of solid mechanical bodies the 

interaction happens in the touch point of bodies. For 
the waves, situation is other. At first, the interaction 

happens, in some volume, and in second, the 

interaction will be maximal effective, when the 
amplitude values of interacting waves will be equal. 

This is general requirement of the coordination 

between transmitter and receiver.  

 
 

 

 
 

 

 
 

 

 

 
As the wave-object is spherical, and 

incident traveling wave is flat, the position of 

volume, in which happens the interaction, will 
depend from amplitude, or intensity, of incident 

wave. If the incident wave has major intensity, the 

interaction will happen closer to center of wave-
object in volume V1 (fig. 4а), but if intensity of an 

incident wave is small, the wave - object "will 

agglomerate energy" in greater volume V2 a (fig. 

4б). The result of interaction in both cases is the 
same, namely, as is shown above, in 

correspondence with expression (25), the frequency 

of wave-object will vary on of incident wave 

frequency:         i  . 

Or, if this expression multiply by Plank 

constant, we shall receive the known formula for 

energy change of wave-object at uptake of a light 

quantum        iW  . 

The second question consists in that, the 
realization of the act of interaction depends also on 

a relation of phases of interacting waves. In all 

deductions, which we have given above, we 
considered, that a phase of interacting waves 

coincide, however in practice it not always so, this 

fact lead to the indeterminacy in result of interaction 
between wave-object and incident wave.  

 

4. INTERACTION OF TRAVELING 

WAVES WITH A WAVES FIELD 

Above was shown that, the same laws 

describe the interaction between standing waves as 
interaction between mechanical bodies. It allows 

equating the stable standing waves with particles. 

For particles the relation between the kinetic energy 

Wc, the impulse p and the frequency  is 

determined by the formulas: 
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Figure 3. Domain of interaction between 

object and incident wave at: a) major; b) 

small intensity of incident wave. 
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Here: 

W0 - energy of the resting particle; WT - total 

energy of a particle; p    - impulse of a particle; 0 - 
frequency of a particle in own frame of reference; 

m0  - mass of the resting particle. 

From this it is possible to make a 

conclusion that, the stationary waves-objects have 
energy, impulse, mass and velocity. But, in this 

case, the problem appears with treatment of concept 

of mass and velocity in relation to traveling waves. 
Is generally accepted to consider that, the traveling 

waves have only energy and impulse, but it haven't 

the masses and it is impossible to connect with them 
the change of velocity concerning a frame of 

reference, as they are propagating with a constant 

value of velocity c.  

The concept of mass follows from the 
Newton's second law. Mass represent a resistance of 

the body to force, which acts on the body and 

changes its velocity. If we refuse to waves 
travelling in property of mass, by thus we consider 

that, they can affect particles (or standing waves), 

but on them are impossible to act. This contradicts 

the third law Newton's, relativity principle and at 
last, to common sense. 

In the article [4] we have offered to 

introduce the concept of inertness. It allows 
applying the identical approach for travelling and 

standing waves. Let's define inertness m as the ratio 

of wave energy to a quadrate of traveling waves 
velocity propagation. In our case this is light 

velocity. Then, according to this definition, 

inertness will have both, standing and traveling 

waves. 
The application of inertness concept for 

light waves will allow us to express losses of energy 

by a wave not only through change of its frequency. 
The change of waves energy can be expressed 

through the change of observer velocity v with help 

of the Doppler's formulas. Such approach is 

expansion of the relativity principle. Really, if we 
can speak about change of wave energy (or 

frequency) at change of the observer velocity, that, 

with the same basis we can speak that, the 
frequency has varied because there is equivalent 

change of wave velocity. In correspondence with 

the relativity principle, the results of observations 

should not depend on the one who changes the 
velocity: the observer, or observed object. Thus, we 

introduce the concept of change of equivalent wave 

velocity vE, and we accord to traveling wave the 

status of object. 
We can formulate the following definition. 

The equivalent change of wave velocity v is equal 

to such change of the observer velocity, which calls 

the same change of wave frequency at the expense 

of Doppler effect. Naturally, the absolute equivalent 
velocity not exists, there is only relative change of 

velocity at transition from one frame to another. 

The change of equivalent wave velocity v 
should not be confused with velocity of wave 
propagation c, which remains always constant in all 

frames, or with oscillatory velocity, caused by wave 

in medium, known in acoustics. 

The concepts of inertness and equivalent 
velocity allow viewing interactions of all types of 

waves from positions unified. In particular, it is 

possible to execute the analysis of interaction of a 
traveling wave with a random undular field 

representing a superposition of a great many of 

chaotically propagating traveling waves. 

The travelling wave represents the 
directional transfer of energy and impulse in 

medium. If medium is homogeneous, the motion 

from one layer will be transmitted completely to 
other layer, just as the motion between two identical 

billiard balls is transmitted. If the balls are not 

identical, the motion from one ball to another ball 
will not be transmitted completely. Similarly, if the 

layers of medium differ from each other by the 

parameters, the transmission of energy will be not 

complete. The wave in this case will lose the 
energy, or we can say the wave will transmit energy 

of heterogeneity. 

Any wave, in itself, creates in medium the 
heterogeneity, therefore, the wave transiting 

through a field of other waves, will lead to partial 

losing of its energy. 
In acoustics this fact usually is ignored, as 

losses at the expense of a dissipation of energy in 

acoustic mediums is usually significant more, than 

losses at the expense of interaction with other 
waves. 

In ideal medium, the losses of wave energy 

will be only at the expense of transmission of 
energy to other waves, which form a chaotic 

undular field. Thus, the losses of energy (and 

consequently also change of frequency) of 

examined wave will be proportional to the effective 
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value of excess density of medium created by the 

undular field.  

As was shown above, as a result of waves 

interaction their frequency varies, but not their 

intensity. Is natural to extending this fact to 

interaction between travelling waves with the 

arbitrary undular field. The interest represents a 
case, when the light wave comes from the spatial 

objects situated very far. In this case, light wave on 

its trajectory will interact with other light fields for 
a long time, and the part of energy, which will be 

transmitted to a chaotic undular field, existing in 

space, becomes considerable. 
It is known that light, which comes from 

the far spatial objects experience so-called red shift 

of spectral lines. It means spectrum of radiation is 

displaced in the party of lower frequencies. Now 
this change of a spectrum is attributed to a 

Doppler's effect. It is considered that, the Universe 

is expanding, and as the object is further situated, so 
faster it moves off us. One of problems of this 

hypothesis consist in that, irrespective of where is 

situated the observer, for him the "expanding" 

Universe looks like so, as if he is in centre, whence 
expansion began. It is so-called model of the 

inflationary Universe (or a pudding model - 

Universe is represented as a pudding, which grows 

on yeast). 
We propose more simple and natural 

explanation of red shift, namely: red shift of light, 

which comes from the far spatial objects, is caused 
by its interaction with other undular fields. In this 

case, the fact why the red shift is proportional to 

distance up to a light source becomes natural and 
clear. 

Let's assume that, the basic part of such 

interaction happens to so-called relict radiation, 

existing in space. Knowing density of relict 
radiation and frequency change of light on unit of 

length, we can estimate vacuum density. 

Let's make this estimation. We consider, 
that the ratio of density change of radiation energy 

E on unity of length to density of energy of 

radiation E is equal to the ratio of a medial 

additional effective value of density of vacuum, 

created by oscillations of relict radiation , to 

density of empty space in a unperturbed state 0: 
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By multiplication on the numerator and 
denominator of the right fraction on c2, we shall 

receive:       
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Here w is density of energy of relict radiation.  

The inertness of radiation m = E/c2, as was 

spotted above. Hence, the losses of energy density 

of radiation per unit of length  
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where v - equivalent change of wave velocity of 

radiation from the far space object per unit of 

length. Thus        
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Combining the expressions (41) and (42) we shall 

receive: 
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Hence           
20
v

w


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It is possible to express v through the Hubble's 

constant H as   v = HR, 

where R represents the distance, on which there was 
a change of light energy w. Then the final formula 

will look as.            
 2

0
HR

w
             (44) 

Let's substitute the following numerical values in 

(44): w = 610-14 J/m3, H = 2,4410-18 1/s, R = 1 m. 

We receive the value 0  110
22

 kg/m3 

The shown method allows only estimating the order 

of vacuum density. This method does not take into 
account many factors. The Hubble's constant 

considers the losses of energy at the expense of all 

interactions, to which are undergone the light. The 
share of relict radiation in these losses can be much 

less. And the denominator should take into account 

only this share. Therefore it is necessary to expect, 

that the obtained value for 0 represent the minimal 

limit of vacuum density. The really value can be 
much more.  
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