
 180

PRACTICAL IMPLEMENTATION OF XOR – LINKED LISTS IN IMAGE

STORAGE

Autori: Igor MARTA, Mihail KULEV

Conducătorştiinţific: dr., conf. univ.MihailKULEV

Universitatea Tehnică a Moldovei
Email:igor_marta@rambler.ru, mkmk@mail.md

Abstract:Have been considered quadtrees in C/C++ languages and their application for image storing and a way of

segmentation of the pixel array, converting quadtree to XOR quadtree, generation of line codes and inverse traversals

of quadtree.

Keywords: Quadtree, XOR – linked lists, linecodes, rgb color pallet, bitmap image format, pixel array, spatial data

structure.

1. Introduction

The aim was to involve this method of linking nodes into a project which makes use of linked lists or trees

that require bidirectional traversals. The choice was computer graphics. There are several methods of storing

an image in computer memory. One of those is the polygon decomposition (here: square decomposition),

which involves usage of quad trees and linked lists. Also in this method are required bidirectional traversals

of the tree which is the place where XOR linking can fit pretty well in order to safe space and to avoid using

of an additional memory field in the quad tree structure. Also it was practically useful to see graphically what

image the quad trees contain and it was involved in the project some references of image processing. This

was made in order to be able to save the pixel matrix in quad tree form and in image form. Also it was

interesting to see if after decomposition and saving the image in location code form, the size of memory

occupied by the image reduces or increases.

2. Practical implementation of XOR – linked lists in image storage

XOR linked lists are a data structure used in computer programming. They take advantage of the

bitwise exclusive disjunction (XOR) operation, here denoted by ⊕, to decrease storage requirements

for doubly-linked lists. An ordinary doubly-linked list stores addresses of the previous and next list items in

each list node, requiring two address fields:

... A B C D E ...

–> next –> next –> next –>

<– prev<– prev<– prev<–

An XOR linked list compresses the same information into one address field by storing the bitwise XOR

of the address for previous and the address for next in one field:

... A B C D E ...

<–> A⊕C <-> B⊕D <-> C⊕E <->

When you traverse the list from left to right: supposing you are at C, you can take the address of the

previous item, B, and XOR it with the value in the link field (B⊕D). You will then have the address for D

and you can continue traversing the list. The same pattern applies in the other direction.

To start traversing the list in either direction from some point, you need the address of two consecutive

items, not just one. If the addresses of the two consecutive items are reversed, you will end up traversing the

list in the opposite direction.

Quad tree
A quadtree is a tree data structure in which each internal node has exactly four children. Quadtrees are

most often used to partition a two dimensional space by recursively subdividing it into four quadrants or

igor_marta@rambler.ru
mkmk@mail.md

 181

regions. The regions may be square or rectangular, or may have arbitrary shapes. This data structure was

named a quadtree by Raphael Finkel and J.L. Bentleyin 1974. A similar partitioning is also known as a Q-

tree. All forms of Quadtrees share some common features:

 They decompose space into adaptable cells

 Each cell (or bucket) has a maximum capacity. When maximum capacity is reached, the bucket

splits

 The tree directory follows the spatial decomposition of the Quadtree

Quadtrees may be classified according to the type of data they represent, including areas, points, lines

and curves. Quadtrees may also be classified by whether the shape of the tree is independent of the order

data is processed.

A node of a point quadtree is similar to a node of a binary tree, with the major difference being that it has

four pointers (one for each quadrant) instead of two ("left" and "right") as in an ordinary binary tree. Also a

key is usually decomposed into two parts, referring to x and y coordinates. Therefore a node contains

following information:

 4 Pointers: quad[‗NW‘], quad[‗NE‘], quad[‗SW‘], and quad[‗SE‘]

 point; which in turn contains:

 key; usually expressed as x, y coordinates value; for example a name

The key is the first operation, and the properties of XOR:

 X⊕X=0

 X⊕0=X

 X⊕Y=Y⊕X

 (X⊕Y)⊕Z=X⊕(Y⊕Z)

The R2 register always contains the XOR of the address of current item C with the address of the

predecessor item P: C⊕P. The Link fields in the records contain the XOR of the left and right successor

addresses, say L⊕R. XOR of R2 (C⊕P) with the current link field (L⊕R) yields C⊕P⊕L⊕R.

 If the predecessor was L, the P(=L) and L cancel out leaving C⊕R.

 If the predecessor had been R, the P(=R) and R cancel, leaving C⊕L.

In each case, the result is the XOR of the current address with the next address. XOR of this with the current

address in R1 leaves the next address. R2 is left with the requisite XOR pair of the (now) current address and

the predecessor.

Image decomposition

A natural gray-level image usually can be divided into different size regions with a variable amount of

details and information. Such segmentation of the image is useful for efficient coding of image data. QT

decomposition is a powerful technique which divides the image into 2-D homogeneous (in the property of

interest) regions, i.e., produces the segmentation. The decomposition builds a tree. Each tree node has four

children and it is associated with a uniquely defined region of the image. It is obvious that the root is

associated with the whole image. QT decomposition can be done either by top-down or bottom-up

procedures. In Fig. 1, both top-down and bottom-up QT decomposition procedures are illustrated. It is well

known, and also demonstrated by this simple example, that the bottom-up procedure is superior; therefore it

is preferred for usage in the suggested algorithm. When QT decomposition is used for image compression,

the resulting tree is coded. The coding procedure includes coding of the tree structure information and coding

of the leaf information. Let assign ―1‖ to the parent node and “0” to the leaf. To each leaf a parameter (or

parameters) that describe the intensity of the corresponding subimage will also be assigned. Obviously, the

image pixels are always leaves, so the tree structure coding can be stopped one level before the bottom level.

Fig. 1

 182

An image consists of a two-dimensional array of numbers. The color or gray shade displayed for a given

picture element (pixel) depends on the number stored in the array for that pixel. The simplest type of image

data is black and white. It is a binary image since each pixel is either 0 or 1. The next, more complex type of

image data is gray scale, where each pixel takes on a value between zero and the number of gray scales or

gray levels that the scanner can record. These images appear like common black-andwhite photographs -

they are black, white, and shades of gray. Most gray scale images today have 256 shades of gray. People can

distinguish about 40 shades of gray, so a 256-shade image ―looks like a photograph". The most complex type

of image is color. Color images are similar to gray scale except that there are three bands, or channels,

corresponding to the colors red, green, and blue. Thus, each pixel has three values associated with it. A color

scanner uses red, green, and blue filters to produce those values. Images are available via the Internet,

scanners, and digital cameras. Any picture shown on the Internet can be downloaded by pressing the right

mouse button when the pointer is on the image. This brings the image to your PC usually in a JPEG format.

Your Internet access software and other software packages can convert that to a TIFF or BMP.

The BMP file format, sometimes called bitmap or DIB file format (for device-independent bitmap), is

an image file format used to store bitmap digital images, especially on Microsoft

Windowsand OS/2 operating systems.

Many older graphical user interfaces used bitmaps in their built-in graphics subsystems; for example,

the Microsoft Windows and OS/2 platforms' GDI subsystem, where the specific format used is the Windows

and OS/2 bitmap file format, usually named with the file extension of .BMP or .DIB.

In uncompressed BMP files, and many other bitmap file formats, image pixels are stored with a color

depth of 1, 4, 8, 16, 24, or 32 bits per pixel (BPP). Images of 8 bits and fewer can be

either grayscale or indexed color. An alpha channel(for transparency) may be stored in a separate file, where

it is similar to a grayscale image, or in a fourth channel that converts 24-bit images to 32 bits per pixel.

BMP FileHeader Stores general information about the BMP file.

BitmapInformation (DIB header) Stores detailed information about the bitmap image.

ColorPalette Stores the definition of the colors being used for indexed color bitmaps.

BitmapData Stores the actual image, pixel by pixel.

3. Conclusion

So it shows that this method is suitable only when our image has dimensions . Also it will be

profitable in memory handling when our image has many regions of homogeneous pixel values, it will save

only one value in a leaf node instead of saving all those values in a matrix. Main opinion is that bitwise

operations are very practical and straight forward; they offer high manipulation of programming units and a

very big flexibility of the algorithm. In our case we managed to save one memory field by not using direct

linking between nodes, but the XOR linking method.

References

1. Samet H. Applications of spatial data structures to computer graphics (AW, 1990);

2. Brian W. Kernighan Dennis M. Ritchie C programming language(1972);

3. Dwayne Phillips second edition of Image Processing in C (Copyright 1994,).

