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Abstract. In this paper, there were deduced three new lifetime distributions of serial-parallel
and parallel-serial networks, their distribution being approached by means of analytical and
Monte-Carlo methods. The novelty of the distribution consists in the fact that the number of
subnets is random, governed by the Poisson and Logarithmic distributions, the lifetimes of
the units in each subnet being independent, identically, exponentially distributed random
variables, the number of units in each subnet is the same constant integer number. It was
shown that the most important theoretical characteristics of lifetime for such networks, as
the mean value, the variance, the survival/reliability function, my be approximated, with
desired accuracy, by the same corresponding characteristics, as the sample mean value,
sample variance, empirical survival/reliability function simulated by Monte-Carlo methods.
Results are illustrated tabularly and graphically for some concrete examples.
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Abstract. In aceastd lucrare au fost deduse trei noi distributii de durata de viata a retelelor de
tip serial-paralel si paralel-serial, distributia acestora fiind abordata prin metode analitice si
metode Monte-Carlo. Noutatea distributiei consta in faptul ca numarul de subretele este
aleatoriu, guvernat de distributiile Poisson si Logaritmicd, duratele de viatd ale unitatilor din
fiecare subretea fiind variabile aleatoare independente, identic, exponential distribuite,
numarul de unitati din fiecare subretea. este acelasi numar intreg constant. S-a aratat ca cele
mai importante caracteristici teoretice ale duratei de viata pentru astfel de retele, precum
valoarea medie, varianta, functia de supravietuire/fiabilitate, pot fi aproximate, cu acuratetea
dorita, prin caracteristicile corespunzdtoare: valoarea medie a esantionului, varianta
esantionului si functia empirica de supravietuire/fiabilitate, simulate prin metode Monte-
Carlo. Rezultatele sunt ilustrate tabelar si grafic pentru unele exemple concrete.

Cuvinte cheie: valoare medie, variantd, functie de supravietuire/fiabilitate, metode Monte-Carlo.

1. Introduction

Serial-parallel and parallel-serial networks are usually found in many works [1-3] as a
subsystem within complex networks, such as Wi-Fi, computers, and communication networks.
The overall reliability of these larger networks depends on the reliability of these subnets [4].
Although these network types have been extensively studied, existing research
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predominantly relies on static probabilistic models [5-6]. These models assume constant
probabilities of network units remaining operational over time, with a fixed number of units
[5] Architecturally, the structure of serial-parallel and parallel-serial networks is shown and
described in the source [7].

However, the ever-changing nature of modern networks requires a more flexible
approach. Networks are influenced by various factors, including environmental shifts, user
behavior, and hardware wear and tear. All of these elements can affect the reliability of
network components. As a result, there is an increasing demand for models that account for
the dynamic nature of network reliability, considering fluctuations in operational
probabilities and variations in the number of network units. In this context, research on serial-
parallel and parallel-serial networks offers significant insights into the reliability of dynamic
networks [8]. By examining how these simpler network architectures behave in changing
environments, researchers can create more robust models for analyzing and predicting the
reliability of complex networks. This empowers network engineers to design more resilient
systems capable of withstanding the challenges posed by real-world conditions.

In this paper, we consider the dynamic mathematical models of serial-parallel (type A)
networks and parallel-serial (type B) networks [9]. For the study we will take variants (type A
or B) in which the network units have exponentially distributed lifetimes being independent,
identically distributed random variables (i.i.d.r.v.) with the cumulative distribution function
(c.d.f) F(x) and the number of units in each subnet being the same and equal to N22.

Also, the number of subnets is a random variable M of PSD classes, independent of
lifetimes of units.

2. Notions and auxiliary results
As the number of subnets is a variable of PSD classes [10], with Poisson or Logarithmic
distribution, we will define according to the source [11] the Power Series Distribution.

Definition 1. We say that M is a Power Series Distributed random variable with power series
function A(w) = Y. =0 am@™ and power parameter of the distribution w, shortly M € PSD, if

m
m

Alw)’
h . m . . .
where the power series Y50 @™ is convergent with radius of convergence a positive

P(M =m) = a,=>0m=012..w € (0,71),

number 7. As real networks invariably include at least one subnet, or each subnet contains
at least one unit, the distribution of parameters must be O-truncated. So, as a PSD, O-
truncated Poisson(w) and Log(w) distributions be represented as in [9] in this way.

Table 1
The representative elements of the PSD class for Poisson and Logarithmic truncated
distributions

Distribution am W A(w) T
Poisson*(w), 1 _ w e® —1 +00
w>0 {E,form—l,Z,...,
0, form = 0.

1 — —
o<1 {E'form =12, ° mimer

0, form = 0.
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Then, according to the paper [9] we have the following:

Proposition 1. The lifetime cumulative distribution functions (c.d.f.) for networks of type A and B,
that we will call distributions of type Min(Max) — PSD and Max(Min) — PSD can be calculated
respectively by the general formulas

B(m(l—(F(x))N)>

Fs_p,(x)=]1— 5 @) I10 400y (%) 1)
B w(l—(l—F(x))N)
Fp—s(x) = < B(w) > I[O,+oo) (x) (2)

where: F(x) is a c.d.f. of lifetime for each unit of subnet, N is the number of units in each of M
subnets and B(w) is a power series function of r.v. M.

We will denote the reliability function, also known as the survival function, of a network by
R(x), where R(x) = 1 — F(x). Also, we denote by R,_, (x) the reliability of the serial-parallel
network, and by R,_;(x) - the reliability of parallel-serial network. The reliability functions
of the respective networks can be calculated by the formulas:

B(w(l—(F(x))N)>

B(w)

Rs_p(x) = Ij0,4+00)(X) + I (—c0,0 (%) (3)

B<w(1—(1—F(x))N)>
B(w)

Rp_s(X) =(1- I[O,+oo) (.X') + I(—oo,O] (.X') (4)

3. Exponential Min(Max)-Poisson and Max(Min)-Poisson mixed distributions as a lifetime
distributions
Thus, let consider that F(x) = (1 — e ™)y 10 (x), x > 0. If M~Poisson*(w), then
o™ .
P(M =m) = E/(e‘*’ — 1), B(w) = (e® — 1) . So, for (1), by knowing the formula of the
function B(w), we have that:
—AX N
w<1—(1—e 4 ) )_1
ow_1 1[0,+oo)(x) (5)

Fs—p(x) = 1_e

Deriving Error! Reference source not found. with respect to x, we obtain that the probability
density function (p.d.f) f;_,(x) given by the following formula:

—(1-e2x N)_
N_lew<1 (1 e ) Ax

—Ax
fop(r) = X220 < 0.4y (%) ©)
In the same way we find that lifetime c.d.f. for networks of parallel-serial type:
e“’(l_e_mx)—l
F,_s(x) = lTI I 400y (%) (7)

and its p.d.f. density function:
(l—e_’le)—ANx
fpos(X) = 22— Ijg ) (%) (8)
Due to the fact that lifetime of the Serial-Parallel distribution is a r.v.
Us.,=min[max(Xiz, X1z,...Xwn), max(Xzs, Xiz... Xn2), .., max(Xmz, X1z,...Xmy)]

Nwle®”
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and lifetime of the Parallel-Serial distribution is a r.v.

Vp.s =max[min(X11, Xzz,...X1N), m/'n(Xﬂ, X1z,...XNz), ooy m/'n(XMl, X12,...XMN)],
where: lifetimes of /-th unit in the j-th subnet Xj are i.i.d.r.v, X ~ exp{A}, A>0, for i=1,2,..,N, N is
the number of units in each subnet, and the number of all subnets is a r.v. M~Poisson(w), w >
0 we say that their corresponding distributions are called, respectively, Exponential Min(Max)-
Poisson and Max(Min)-Poisson mixed distributions.
Another important indicator is the hazard function [12], also known as failure rate function,
that is denoted, for example in the case of Network of type A, by hs_,,(x) and given by the

formula hs_,(x) = fs_p(x) (1 — Fs_p(x)). Applying the last formula to the cases we study,

we get
—ax\V
Newi(1—e-A% N—-1 w(l—(l—e ) )—Ax
hy_p(x) = 2207 _e 9)
ew(l—(l—e ) )_1
and
N w(l—e_}“Nx)—ANx
hp—s(x) = ewe(l_el_e—/wx) (10)

Remark 1. The lifetime distribution for parallel-serial networks will be excluded from our
research because this distribution coincides with the distribution proposed and studied in the
paper [13], as a lifetime distribution Exponential Max-Poisson mixed distribution.

Remark 2. Another distribution functions and pdf of the rv. Us, and V,., for different
combination are presented in the paper [3].

So, in the following, we will analyze from a statistical point of view, including through Monte
Carlo validation, the serial-parallel type model, thus bringing a new lifetime distribution of
serial- parallel networks. Thus, using general formula for lifetime p.d.f. (6) we will
calculate, for our needs, the theoretical mean value and variance numerically, by means of
System Mathematica 14.0, because our distribution depend, in fact, of 3 parameters: A, w and
N. After we get the results, we will simulate in Mathematica these random variables using
Monte-Carlo methods and check how well they approximate the theoretical mean value and
the theoretical dispersion [14].

The Monte Carlo simulation algorithm in our case may be described as following:

Step 1: Generate a sample of N values based on exponential distribution with parameter A.

Step 2: Take the maximum value of sample generated at the Step 1.

Step 3: Generate the value of M using a zero-truncated Poisson distribution with parameter w.
Step 4: Generate a sample of M values by repeating M times the Steps 1-2.

Step 5: Take the minimum value of the sample created at the Step 4.

Step 6: Calculate, according to the Central Limit Theorem for independent and identically
distributed random variables [15], the value k=[(0X:1«2/€)*]+1, where ¢ is the standard
deviation of lifetime Us.,,, Xiq42is the 1-a/2 quantile for standard normal distribution N(0,1)
and e is the desired error of approximation for theoretical mean value EU., taking a=0.05
and €=0.01.

Step 7: Generate a sample of k values by repeating steps 4-5 k times.

Step 8: Calculate the mean value EU,_,of the sample generated at the 7™ step to
approximate the theoretical mean value EUs.,.
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48 Statistical simulation of reliability of networks with exponentially distributed unit lifetimes

Step 9: Calculate the variance D U,_, of sample generated at the 7™ step to approximate

the value of DU.,,.

Table 2
Simulated vs theoretical values of mean and dispersion for Serial-Parallel model with
M~Poisson’(w),i.e.P(M =m) = ——2" m=12,..,0 > 0

w A N EUs_, EU,, DU,_, DU,
0.5 1.25 3 1.348149323 1.338431878 0.888013261 0.872941761
0.5 1.25 5 1.701888703 1.703793221 0.925795556 0.934127344
0.5 1.25 8 2.04654821 2.044372993 0.946212854  0.942520703
0.5 2.15 3 0.783777285 0.788386991 0.51509177 0.520160698
0.5 2.15 5 0.98782637 0.985834986 0.536698953 0.535302996
0.5 2.15 8 1.187243735 1.195373996 0.547304826 0.557221324
0.5 3.65 3 0.46033396 0.460613746 0.302799361 0.302450773
0.5 3.65 5 0.582155058 0.581128178 0.315834387 0.315438699
0.5 3.65 8 0.700233886 0.699444238 0.324542748 0.320289999
2 1.25 3 1.034266589 1.037160726 0.724065222 0.72071219
2 1.25 5 1.368218002 1.369974019 0.760181813 0.761771466
2 1.25 8 1.702108973 1.69811621 0.78666366 0.789075721
2 2.15 3 0.601482708  0.600396316  0.419109425  0.415211898
2 2.15 5 0.796446843 0.794904434  0.442090831 0.43995408
2 2.15 8 0.991439749 0.989627481 0.460112171 0.460228158
2 3.65 3 0.354989223 0.355135287 0.247767369 0.247998247
2 3.65 5 0.468843135 0.46996092 0.26090492 0.262020569
2 3.65 8 0.582949722 0.584418392 0.269372425 0.268073442
10 1.25 3 0.459026258 0.459073661 0.234353946 0.234169648
10 1.25 5 0.736948531 0.73813245 0.279303413 0.27924198

Note: N - the number of units in each of M subnets; EU,_,, - the theoretical mean value; EU,_,, - the mean
value calculated with Monte-Carlo simulated values; DU,_,, - the theoretical variance; D U;_, - the variance
calculated with Monte-Carlo simulated values.

In the Table 2 is shown how for lifetime p.d.f.  (6) we calculated the theoretical mean value
EUs_, and variance DUs_, numerically, using the Wolfram Mathematica 14.0 soft, depending
on the values of the parameters A, w and N. After that, we simulated them in Wolfram
Mathematica using Monte-Carlo methods described in the algorithm above, and obtained for
the same parameters, that the empirical mean IE’US\_p and empirical variance DTJS\_p
approximate the theoretical mean value and the theoretical dispersion very accurate,
respecting the proposed admissible error €=0.01. Also, we will follow the similarity in the
graphic representation that follows.

It is easy to see how the number of simulations influences the resulting data by
viewing the constructed empirical functions. For this we chose two values for the number of
simulations k, the first case k = 50, and the second case k = 20735. The difference between
the two cases is that for the second case the number k is calculated according to the Central
Limit Theorem [15], as stipulated in the algorithm. In the Figure 2b, we notice that for the
same parameters, when the number k was deduced according to the formula the empirical
distribution function approximates the theoretical cumulative distribution very well, and for
the larger number of iterations (simulated values) they tend to coincide.
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Figure 2. Survival function for w = 0.5,4 = 1.25,N = 3,¢ = 0.01.

4. Exponential Min(Max)-Logarithmic and Exponential Max(Min)- Logarithmic mixed

distributions as a lifetime distributions

With a similar approach as for the previous case, the study is extended with a new
case where the value of M, the number of subnetworks, will be generated using the
logarithmic distribution. With the appropriate substitutions, the following results F(x) =

(1 = € )jg 400 (), x > 0.1 M~Log(w), and P(M =m) = ——=—- ©0<w<1,Bw)=

—In(1 — w) then, for Error! Reference source not found.) by knowing the formula of the
function B(w) and substituting it, we get that:
ln(w((1—e-'1x)N—1)+1)

In(1-w)

Fs_p,(x)=]1—

Ijo,+00) (%) (11)

The first derivative of F(x) from Error! Reference source not found. yields the distribution
density function f(x) and it is represented by the formula:
Niw(1—e *H)N-1

= 12
fs_p(x) (w(l—(1—e_x’1)N)—1)ln(1—a))ex}~ ( )
In the same way, we calculate the lifetime distribution function F(x) for networks of
parallel-serial type:
_ ln(1+(—1+(e‘x}“)N)w)
Fps(@) = —— 1o (13)
The distribution’s density function can be represented as following:
AwN —xA\N
fp-s(®) = wie ) (14)
((1—(e‘x}~) )a)—l)ln(l—a))

Following a similar approach as in the initial case, we utilize the same formula to deduce
the hazard function, also known as the failure rate function:
AwN(1—e~Xh)N-1

h __ 15
s-p (%) exl(w(l—e—x’l)N—w+1)1‘1(“)(1—9_“)1\]—“’“) )
and
AwNe Nx
hp—s(x) T (weN*— g+ 1)(In(1-w) —In(we-NX—g+1)) (16)

In similar fashion, we analyze the next case. With respect to all the given constraints and by
an analogous to the first part procedure, we will perform an analysis from a statistical point
of view, including validation through Monte Carlo simulation, of the serial-parallel type
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model and the parallel-serial type model. The main goal is to emphasize the two new lifetime
distribution of serial- parallel and parallel-serial networks.

Table 3

Simulated vs theoretical values of mean and dispersion for serial-parallel model with
M~Log(w),i.e., P(M =m) =

1 ] o™
-In(1-w) m

m=12,...,0<w<1

w A N EUs_p EU_, DU, DU,
0.15 1.25 3 1428972 1420671 0.919236 0.916434
0.15 1.25 5 1.784603 1790588 0.957371 0.962266
0.15 1.25 8 2132027 2136382 0.976682 0.978806
0.15 215 3 0.829977 0.837779 0.534452 0.53958
0.15 215 5 1.03809 1.037251 0.555081 0.55459
0.15 215 8 1.238298 1.232948 0.567016 0.568323
0.15 3.65 3 0.48913 0.488425 0.314865 0.311441
0.15 3.65 5 0.611045 0.604446 0.326281 0.319532
0.15 3.65 8 0.729456 0.730239 0.333657 0.336813
0.45 1.25 3 1324674 1320241 0.882955 0.883411
0.45 1.25 5 1.676801 1.678226 0.919081 0.920216
0.45 1.25 8 2.022778 2.029045 0.942711 0.947784
0.45 215 3 0.771506 0.765819 0.514974 0.508486
0.45 215 5 0.975403 0.975921 0.534888 0.535843
0.45 215 8 11747 1.173953 0.549026 0.548143
0.45 3.65 3 0.454441 045114 0.303259 0.300944
0.45 3.65 5 0.574409 0.571679 0.315466 0.312011
0.45 3.65 8 0.691618 0.6897 0.322884 0.32016
0.95 1.25 3 0.893229 0.89389 0.741071 0.741699
0.95 1.25 5 1.212151 1.21096 0.796375 0.790388
0.95 1.25 8 1.534569 1533734 0.8263 0.824371
0.95 215 3 0.520795 0.521037 0431974 0433642
0.95 215 5 0.704601 0.705342 0459721 0.460441
0.95 215 8 0.894015 0.891345 0482631 0.476985
0.95 3.65 3 0.30735 0.3059 0.25542 0.25435
0.95 3.65 5 0415546 0415356 0.272264 0.27161
0.95 3.65 8 0.524733 0.525343 0.281704 0.281689

Note: N - the number of units in each of M subnets; EU,_,

- the theoretical mean value; EUs_, - the mean

value calculated with Monte-Carlo simulated values; DU,_, - the theoretical variance; D U,_j, - the variance
calculated with Monte-Carlo simulated values.

Table 3 presents the calculation of the theoretical mean and variance for the lifetime

probability density function (p.d.f) given in equation (6). We repeated the numerical
calculations using Wolfram Mathematica 14.0, based on the parameters A, w, and N.
Subsequently, we simulated these values using Monte Carlo methods as described in the
preceding algorithm. The results confirm one more time that the empirical mean IET]:p and
empirical variance ]D)/UT_,, closely approximate the theoretical values, adhering to the
proposed admissible error of €=0.01. The following graphical representation further

demonstrates this similarity.

Journal of Engineering Science

September, 2024, Vol. XXXI (3)



M. Rotaru

51

0.6+
0.4

021

»
-
" i

1.0

1.5 2.0

x
2.5 3.0

Theoretical
Empirical

Figure 3. Survival function graph for w = 0.5,4 = 1.15,N = 3, = 0.01.

In the following table of values and graphical example, we observe how well the empirical
functions approximates the theoretical values for parallel-serial networks with M~Log(w).

Table 4

Simulated vs theoretical values of mean and dispersion for serial-parallel model with
M~Log(w),i.e., P(M =m) =

1

— 2 m=12,....0<w<1
-Inl-w) m

w A N EV,_s EV, s DV, DV, s
0.25 1.25 3 0.28581 0.28576 0.275492 0.277106
0.25 1.25 5 0.171706 0.170882 0.165372 0.164594
0.25 1.25 8 0.107111 0.107962 0.103412 0.102547
0.5 2.15 3 0.183798 0.183041 0.169445 0.168233
0.5 2.15 5 0.110467 0.111056 0.101673 0.101606
0.5 2.15 8 0.069047 0.068979 0.063599 0.063494
0.85 3.15 3 0.166029 0.166184 0.135527 0.135488
0.85 3.15 5 0.0997884 0.100007 0.0813673  0.081666
0.85 3.15 8 0.0623611 0.0623248  0.0508497  0.0506674

Note: N - the number of units in each of M subnets; EV,_,, - the theoretical mean value; EV,_, - the mean
value calculated with Monte-Carlo simulated values; DV,_j, - the theoretical variance; D V_, - the variance
calculated with Monte-Carlo simulated values.

For Table 4, we proceeded analogously to the steps for Tables 2 and 3, only we
reduced the size of the displayed data set, but we note that the results are just as good,
respecting the chosen error. So we continued to compute numerically in Wolfram
Mathematica according to the parameters A, w, and N the calculation of the theoretical mean
and variance, this time according to the lifetime probability density function (p.d.f.) given in
equation (8) for parallel-serial model. As expected, the theoretical and empirical results tend
to coincide. Even better, we see these results interpreted graphically below.

What we see in Figure 4 is that for k = 34447 simulations, calculated according to the
Central Limit Theorem [15], with the help of Wolfram Mathematica 14.0 software we obtained
these estimates of the empirical and theoretical survival function. We notice that for sufficient
number of simulations, these two functions tend to coincide.
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Figure 4. Survival function for w = 0.5,4 = 1.25,N = 3, = 0.01

5. Conclusion

The changing nature and evolution of networks encountered in engineering today lead
to an increased demand for dynamic reliability analysis models. These models are complex
and different in operation, requiring the models to be tailored to the problem, the network
structure and how the subnets and units work. Starting from the goal of analyzing the
reliability of networks with serial-parallel and parallel-serial architecture, we managed to
derive 3 new lifetime distributions, distributions approached by analytical and empirical
methods.

The studied dynamic networks have serial-parallel or parallel-serial architecture, each
time the number of subnets being a random variable M of PSD classes, with Poisson or
Logarithmic distribution. The number of units in each subnet is constant, greater than or
equal to 2, the lifetimes of the units in each subnet being independent, identically,
exponentially distributed random variables. In the aforementioned conditions, based on the
general formulas for the calculation of the c.d.f, the calculation formulas for the cumulative
distribution function, the reliability function and the hazard for these new three lifetime
distributions were deduced.

Next, based on the deduced formulas, the theoretical mean value and the theoretical
dispersion were calculated numerically, implementing the corresponding functions available
in Wolfram Mathematica. Also, with the help of this software we simulated for the same
parameters, random variables through the Monte-Carlo method and obtained the empirical
mean and the empirical dispersion. We have presented the obtained data in tabular and
graphical form, from where we can see that the theoretical and empirical values are very
close, the difference between them does not exceed the admissible error shifted by us in the
algorithm, and for a fairly large sample, these values tend to coincide. Thus, we validated the
obtained theoretical results.
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