Morphological, chemical and structural characterization of ZnO/ZnAl₂O₄ micro-nanostructures

Cristian Lupan¹

¹Center for Nanotechnology and Nanosensors, Department of Microelectronics and Biomedical Engineering, Technical University of Moldova, 168, Stefan cel Mare Av., MD-2004, Chisinau, Republic of Moldova, cristian.lupan@mib.utm.md, ORCID: 0000-0003-2268-6181, www.utm.md

Keywords: ZnO; ZnAl₂O₄; ternary; spinel type; micro-nanostructures.

Abstract. In this work we present a method of obtaining ZnO/ZnAl₂O₄ micronanostructures and their properties. $ZnAl_2O_4$ (bandgap ~3.8 eV) is a promising material for use in different applications, as catalyst, optoelectronic, etc., due to its thermal stability, electronic and chemical properties [1–3]. ZnO micronanostructures obtained using flame transport synthesis were covered with ZnAl₂O₄ nanodots using chemical method. At the end the nanostructures were thermal annealed at 1000°C for 3 hours. Morphological, chemical and structural properties have been investigated using SEM, EDX and XRD, respectively. SEM investigation shows the formation of micro-nanostructures with different morphology, namely tetrapods and nanowires, covered with small nanodots (Fig. 1). EDX study presented the chemical composition of the micro-nanostructures, confirming the presence of Al (Fig. 1). XRD pattern of the investigated micro-nanostructures shows presence of ZnO and ZnAl₂O₄ in the material. Further integration and investigation of sensing properties of devices based on this material is necessary and will be presented in future work.

ELECTRONICS AND MATERIALS SCIENCE

13th IC ECCO

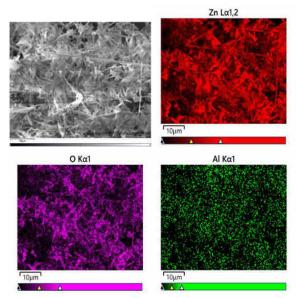


Fig.1. EDX mapping of ZnO/ZnAl₂O₄ micro-nanostructures annealed at 1000 °C for 3h

Acknowledgment. This paper was supported by project code 24.80012.5007.15TC by National Agency for Research and Development of Moldova at Technical University of Moldova.

References

[1] M. Hoppe, O. Lupan, V. Postica, N. Wolff, V. Duppel, L. Kienle, I. Tiginyanu, R. Adelung, ZnAl₂O₄-Functionalized Zinc Oxide Microstructures for Highly Selective Hydrogen Gas Sensing Applications, Phys. Status Solidi Appl. Mater. Sci. 215 (2018) 1–13. https://doi.org/10.1002/pssa.201700772.

[2] D. Zhang, C. Du, J. Chen, Q. Shi, Q. Wang, S. Li, W. Wang, X. Yan, Q. Fan, Improvement of structural and optical properties of ZnAl2O4:Cr3+ ceramics with surface modification by using various concentrations of zinc acetate, J. Sol-Gel Sci. Technol. 88 (2018) 422–429. https://doi.org/10.1007/s10971-018-4820-x.

[3] G. Padmapriya, M. Amudhavalli, Synthesis and characterization studies of spinel ZnAl₂O₄ nanoparticles prepared by Aloe vera plant extracted combustion method, (2020) 2089–2091.