
Technical Scientific Conference of Undergraduate, Master, PhD students,

Technical University of Moldova

Chisinau, Republic of Moldova, March 27-29, 2024, Vol. II

- 917 -

DSL FOR AI PROJECTS ARCHITECTURE

Lucian LUPAN, Mihail MIHALACHI, Nicolai NEJINȚEV*,

Maria CUCOȘ, Valeria FRUNZA

Department of Software Engineering and Automatics, Group FAF-221, Faculty of Computers, Informatics and

Microelectronics, Technical University of Moldova, Chisinau, Republic of Moldova

*Corresponding author: Nicolai Nejințev, nicolai.nejintev@isa.utm.md

Scientific coordinator: Vasili BRAGA, university assistant

Abstract. This paper addresses the complexity of Artificial Intelligent (AI) system design and

deployment by advocating for a Domain-Specific Language (DSL) specifically designed for AI

projects architecture. This research clarifies the possible advantages and difficulties of

implementing a DSL for AI projects through creating an opportunity for organizations to stimulate

innovation, shorten development cycles, and take advantage of the growing opportunities in the

AI landscape by adopting a DSL designed specifically for AI.

Keywords: Machine Learning, architecture, Domain-Specific Language, AI, Speech-to-Text,

Optical Character Recognition

 Introduction

In the swiftly evolving landscape of AI, navigating the intricacies of designing and
deploying AI systems presents formidable challenges. As development of numerous products
incorporating Machine Learning (ML) and other AI components continues to progress, various
challenges have been encountered, particularly concerning communication and alignment among
team members. These teams have typically been multidisciplinary, encompassing profiles beyond
traditional developers and software engineers, including data scientists, psychologists, and AI
experts [1].

This paper advocates for the adoption of SOLeAI, a Domain-Specific Language (DSL)
meticulously crafted for AI project architecture. SOLeAI leverages cutting-edge technologies such
as Speech-to-Text (STT) and Optical Character Recognition (OCR), enabling seamless integration
of spoken and written language processing capabilities into AI projects. By using SOLeAI,
organizations can enjoy many benefits like increased productivity, smoother teamwork, automated
processes, and faster development [1].

Grammar

In the realm of programming languages, understanding the interplay between semantics
and syntax is paramount. A programming language is described by the combination of its
semantics and its syntax. The semantics provide the meaning of every construction that is possible
in the chosen programming language [2]. Complementing semantics, syntax provides the
structural rules governing the arrangement and composition of language elements.

A grammar transforms the program, which is normally represented as a linear sequence of
ASCII characters, into a syntax tree [2]. Central to the comprehension and manipulation of
programming languages is the notion of grammar. By encapsulating the syntactic rules and
constraints of a programming language, grammar plays a pivotal role in enabling software
developers to express their ideas effectively and concisely. The presented DSL's grammar
notations are precisely outlined in Tab. 1.

mailto:nicolai.nejintev@isa.utm.md

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor,
Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 27-29 martie 2024, Vol. II

- 918 -

Table 1

Grammar notations
Notation Description 〈foo〉 foo is a non-terminal symbol

foo foo is a terminal symbol

[x] zero or more occurrences, x is an optional parameter,
‘[‘ and ‘]’ are terminal symbols.

x* zero or more occurrences of x

x⁺ one or more occurrences of x

{ } a grouping, ‘{‘ and ‘}’ in quotes are terminal symbols

| alternative option

G = (S, Vₙ, Vₜ, P)

S - start symbol
Vₙ - finite set of non-terminal symbols
Vₜ - finite set of terminal symbols
P - finite production rules

S = {〈prog〉}

Vₙ = {〈prog〉, 〈sorb〉, 〈block〉, 〈ifBlock〉, 〈statement〉, 〈pipeStream〉, 〈varAssignment〉,
〈varName〉, 〈value〉, 〈function〉, 〈functionName〉, 〈inputData〉, 〈comment〉, ALPHANUM}

Vₜ = {NEWLINE, {, }, if, (,), =, ->, //, STRING, COMMENT_STRING}

P = { <prog> -> 〈sorb〉* EOF

<sorb> -> NEWLINE* 〈statement〉* NEWLINE⁺ | NEWLINE* 〈block〉 NEWLINE*

<block> -> '{' (sorb | NEWLINE)* '}'

<ifBlock> -> 'if' '(' 〈value | pipeStream〉')' 〈statement | block〉
<statement> -> 〈varAssignment | ifBlock | pipeStream | comment〉
<pipeStream> -> 〈function | inputData〉('->' 〈function〉)*

<varAssignment> -> 〈varName〉 '=' 〈value|pipeStream〉
<varName> -> ALPHANUM

<value> -> STRING | 〈varName〉
<function> -> 〈functionName〉 〈value〉*

<functionName> -> ALPHANUM
<inputData> -> 'messageText' | 'messageImage' | 'messageAudio'
<comment> -> COMMENT_STRING

STRING -> ‘"’ ~["\r\n]* ‘"’
COMMENT_STRING -> '//' ~[\r\n]*
ALPHANUM -> [a-zA-Z]+[a-zA-Z0-9]*
NEWLINE -> ('r'?'\n')+
WHITESPACE -> (' ' | '\t')+ -> skip

Technical Scientific Conference of Undergraduate, Master, PhD students,

Technical University of Moldova

Chisinau, Republic of Moldova, March 27-29, 2024, Vol. II

- 919 -

Assignment

In SOLeAI, assignments follow a straightforward process. As long as the user provides
valid data input, the program interprets that value and assigns it to the respective keyword,
following the structure of the grammar. The only user-defined assignment function allowed in the
grammar is <varAssignment>, a function which enables the user to create a variable, storing either
a <value> a <pipeStream> in memory, granting the ability to reuse it later. The restriction for
assigning is that variables must be declared and assigned before they’re used. This ensures that
variables are properly initialized before being utilized within the program.

Used technologies

STT technology, also referred to as automatic speech recognition (ASR), is a
transformative tool converting spoken language into written text, finding applications across
diverse industries. Acoustic Analysis initiates the process by capturing audio input via
microphones, analyzing the audio signal to extract features like frequency, amplitude, and duration
[3]. Language models refine STT output by considering word sequence probabilities in natural
language, aiding in disambiguation and improving accuracy. Post-processing techniques like
grammar checking and error correction further enhance transcription accuracy.

STT technology enhances accessibility for individuals with disabilities, facilitates
transcription services for audio recordings, enables hands-free operation of devices via virtual
assistants, and powers interactive voice response systems and call center automation. It also
supports real-time translation services and voice-enabled search engines. Whisper, an ASR system

that will be used in further implementation, stands out with its robustness to accents, background
noise, and technical language, enabled by training on a large and diverse dataset, facilitating
transcription in multiple languages and translation into English [4].

OCR is the process that converts an image of text into a machine-readable text format [5].
This technology serves as a transformative solution for converting various document formats,
including scanned paper documents, PDF files, and digital images, into editable and searchable
data. OCR systems undertake a series of preprocessing steps, including noise reduction,
binarization, and deskewing, to enhance the quality and accuracy of the document image.
Following preprocessing, OCR systems employ pattern recognition and ML algorithms to locate
and segment text regions within the document image. One of the significant advantages of OCR
technology is its ability to digitize paper documents, such as books, newspapers, and archival

materials, thereby facilitating electronic storage and accessibility [5].
PyTesseract, a Python wrapper for Google's Tesseract-OCR Engine, stands out as a

prominent tool to be used for integrating OCR capabilities into Python applications. With
Tesseract's robust open-source OCR engine at its core, PyTesseract offers a seamless and versatile
solution for incorporating OCR functionality into diverse projects and workflows.

 Other DSLs

Several process modeling languages exist, including Business Process Model and Notation
(BPMN) [6] and Software & Systems Process Engineering Metamodel (SPEM) [7], along with
their extensions. While SPEM serves as an Object Management Group (OMG) [8] standard for

delineating software development processes, it deliberately lacks distinct features tailored to
specific domains or disciplines, such as AI. To the authors’ knowledge, none of the existing
process modeling languages offer AI-specific extensions. In the realm of DSLs for AI, various
languages cater to modeling specific AI activities, such as OptiML [9], Arbiter [10], or Pig Latin
[11]. However, none of these DSLs prioritize process-related aspects.

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor,
Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 27-29 martie 2024, Vol. II

- 920 -

Conclusions

In conclusion, the development and deployment of AI systems present multifaceted
challenges in today's dynamic technological landscape. Throughout this paper, it has been explored
the significance of adopting Domain-Specific Languages tailored specifically for AI projects
architecture. By delving into the complexities of SOLeAI, the document has elucidated the
potential advantages it offers in addressing the complexities of AI system design and deployment.
Through the investigation, the paper highlights the potential of SOLeAI to enhance productivity,
foster collaboration among multidisciplinary teams, and expedite development cycles in AI
projects.

As organizations endeavor to fully leverage the capabilities of AI technologies, the
adoption of specialized DSLs such as SOLeAI stands out as a strategic necessity. Through the
integration of OCR and STT functionalities, SOLeAI empowers organizations to streamline the
development of AI systems tailored to image and audio data processing. Looking ahead, continued
research and experimentation will be essential to refine and expand the capabilities of SOLeAI,
driving transformative advancements in AI system architecture and deployment.

References

[1] S. Morales, R. Claris, and J. Cabot, Towards a DSL for AI Engineering Process Modeling,

in International Conference on Product-Focused Software Process Improvement
(PROFES 2022).

[2] Introduction to Programming Languages/Grammars, September 15 2016 [Online]
[Accessed: 09.04.2024]. Available:
https://en.wikibooks.org/wiki/Introduction_to_Programming_Languages/Grammars

[3] Audio Analysis With Machine Learning: Building AI-Fueled Sound Detection App, May
12 2022 [Online] [Accessed: 12.04.2024]. Available:
https://www.altexsoft.com/blog/audio-analysis/

[4] Introducing Whisper [Online] [Accessed: 12.04.2024]. Available:
https://openai.com/research/whisper

[5] What is OCR (Optical Character Recognition)? [Online] [Accessed: 12.04.2024].
Available: https://aws.amazon.com/what-is/ocr/

[6] Object Management Group Business Process Model and Notation, 1997 [Online]
[Accessed: 12.04.2024]. Available: https://www.bpmn.org/

[7] About the software & systems process engineering metamodel specification version 2.0

[Online] [Accessed: 12.04.2024]. Available: https://www.omg.org/spec/SPEM/2.0/About-
SPEM

[8] Mission & Vision [Online] [Accessed: 12.04.2024]. Available:
https://www.omg.org/about/

[9] A.K. Sujeeth, H. Lee, K.J. Brown, T. Rompf, H. Chafi, M. Wu, A.R. Atreya, M. Odersky,
and K. Olukotun, OptiML: An implicitly parallel domain-specific language for machine

learning.
[10] J. Zucker, M. d’Leeuwen, Arbiter: A Domain-Specific Language for Ethical Machine

Learning, February 07 2020
[11] C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins, Pig Latin: A not-so-foreign

language for data processing, June 09 2008

https://en.wikibooks.org/wiki/Introduction_to_Programming_Languages/Grammars
https://www.altexsoft.com/blog/audio-analysis/
https://openai.com/research/whisper
https://aws.amazon.com/what-is/ocr/
https://www.bpmn.org/
https://www.omg.org/spec/SPEM/2.0/About-SPEM
https://www.omg.org/spec/SPEM/2.0/About-SPEM
https://www.omg.org/about/

