
Technical Scientific Conference of Undergraduate, Master, PhD students,

Technical University of Moldova

Chisinau, Republic of Moldova, March 27-29, 2024, Vol. II

- 907 -

DOMAIN SPECIFIC LANGUAGE FOR CREATING API

DOCUMENTATION

Artiom MARTÎNIUC, Vladislava MUSIN, Eugen OSTAFI,

Marius POPA*, Nichista POPOV

Department of Software Engineering, group FAF-222, Faculty of Computers, Informatics and Microelectronics,

Technical University of Moldova, Chișinău, Republic of Moldova

*Corresponding author: Marius Popa, marius.popa@isa.utm.md

Tutor/coordinator: Cristofor FIȘTIC, asistent universtar, UTM

Abstract. This article introduces a Domain-Specific Language (DSL) designed for the

management and display of API documentation, aiming to ease the documentation process and

enhance the quality of API guides. The common approach to documenting APIs often involves

manual processes that are time-consuming and vastly different across different sources, because

of the variety in either company practice or industry standards. The proposed DSL addresses these

challenges by offering a structured, simple format to understand the complexities involved in

describing API endpoints, parameters, request and response models, and perhaps even examples

of such use. The main goal of this work lies in understanding and getting rid of the struggles

developers face when having to deal with new API documentation. The specific aim of the DSL is

to allow for quick adaptation by developers and technical writers without requiring extensive,

dreadful research and understanding of the different interfaces and classifications of various

sources. By combining theoretical design principles and practical implementation strategies, this

work aims to demonstrate the effectiveness of using a DSL for API documentation. It will provide

a comprehensive solution that will reduce the effort needed for using and understanding API

documentation, by making it more consistent and accurate, therefore enhancing developer

experience when having to use APIs.

Keywords: complexity reduction, consistency, documentation quality, domain-specific language.

 Introduction

A Domain-Specific Language is a programming or specification language dedicated to a
particular problem domain, designed to simplify tasks within that domain. DSLs are often created
to enable more intuitive and efficient solutions compared to general-purpose languages when
dealing with specific types of problems or processes [1].

An API, or Application Programming Interface, consists of a set of communication
protocols and subroutines that allow different software programs to interact with each other. APIs
can be developed for various systems such as operating systems, database systems, hardware,
JavaScript files, or other object-oriented files to facilitate this interaction. API documentation
refers to a set of technical instructions on how to use and integrate it properly [2].

In our article on creating a Domain-Specific Language for API documentation, we have
divided the content into three primary sections: domain analysis, grammar definition, and a sample
program.

Domain Analysis

The evolution of API documentation experienced many changes, similar to the shifts in
software development practices, going from boring manuals to interactive online resources. With
the introduction of web APIs, it led to more standardized documentation, made possible by tools
like Swagger (now OpenAPI) and RAML. These tools improved the accessibility and usability of

mailto:marius.popa@isa.utm.md

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor,
Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 27-29 martie 2024, Vol. II

- 908 -

API documentation, making it more understandable for humans and processable by machines,
helping to create a more integrated digital ecosystem [3].

Nonetheless, API documentation faces several difficulties, including maintaining
consistency and clarity across different APIs, ensuring accessibility and usability for both novice
and expert developers, and keeping the documentation up to date. To address these problems, the
concept of a Domain-Specific Language for API documentation has been proposed. A DSL could
streamline and standardize documentation practices, ensure updates and even include accurate API
guides, thus improving efficiency and reducing the work developers must put in.

Potential users of this DSL include API developers, technical writers, software
development teams, and quality assurance engineers, who would all benefit from this product in
their respective fields. Furthermore, people outside of this specialized domain could make use of
it, like project managers and product owners that could use the DSL to improve project scoping
and team performance. Educators and independent students could also find value in a DSL, using
it as a learning platform and promoting collaboration between students.

The introduction of a DSL for API documentation would be a great improvement in
creating and maintaining API guides, aiming to enhance the developer experience and support
more efficient API integration within software ecosystems. This would create a more intuitive,
accessible, and effective documentation ecosystem for everyone involved.

Language Overview

The Domain-Specific Language (DSL) for API documentation is made to simplify the
creation and maintenance of API docs through a structured computational approach. The idea starts
with parsing, where user-written DSL commands are converted into a more manageable internal
format, known as an Abstract Syntax Tree (AST). This structure organizes the commands related
to API elements and makes it easier to handle everything.

After the AST is fully fleshed out, the DSL taps into this structured data to craft API
documentation in various formats, according to user preferences. The parsing process is supported
by ANTLR, a powerful tool that helps in creating grammars and generating parsers in
programming languages, in this case Python. By employing patterns like listeners or visitors, it
becomes easy to traverse the AST and extract the necessary details needed to generate precise and
comprehensive API documentation [4].

 Input-wise, the DSL is quite accommodating, accepting commands directly in its own
syntax or via structured data files, adding to its user-friendly nature. The language itself is
declarative, emphasizing what the documentation should cover rather than how to assemble it.
This approach makes the documentation process easier and minimizes errors by making sure data
inputs stick to the expected formats and by conducting syntax checks right at the parsing stage.

 In essence, the DSL makes it possible to generate efficient, structured, and error-free API
documentation. This process not only ensures accuracy but also keeps the documentation aligned
with the latest API specifications, greatly improving clarity and utility for developers.

Semantic Rules

For the user to be able to efficiently use the language without getting any errors, there is a
set of rules put in place that he needs to follow:

- Keywords and identifiers are case-sensitive, distinguishing between similar terms.
- Supports only single-line comments, marked with a hashtag #, to simplify annotations.
- Spaces, tabs, and newline characters are used to separate tokens, making sure formatting

errors don't affect interpretation.
- Enclosed in double quotes and can include escaped characters, used for specifying paths,

descriptions, and text content.
- Must start with a letter or an underscore, can include letters, digits, and underscores, but

cannot start with a digit.

Technical Scientific Conference of Undergraduate, Master, PhD students,

Technical University of Moldova

Chisinau, Republic of Moldova, March 27-29, 2024, Vol. II

- 909 -

- Keywords are reserved for defining and structuring documentation and cannot be used
as identifiers.

- Uses symbols for specific syntactic roles such as defining routes, specifying methods,
or delineating code blocks.

- Recognizes numeric literals for use in contexts like specifying versions or limits.
- Uses semicolons to end declarations, to make documentation clearer and separate

statements.

Grammar

The grammar of a programming language is an important part that dictates how programs
are written and understood by a compiler or an interpreter. It is made up of a set of production
rules, which are guidelines for generating valid sequences of symbols and constructing a good
program structure. These production rules are expressed using a combination of terminal and non-
terminal symbols, special characters, and notations that determine how elements in the language
are combined and interpreted.

Table 1

Grammar description
Symbol Meaning

<notation> Non-terminal

notation Terminal

x* x occurs 0 or multiple times

| Separate alternatives

→ Derives

Comment

<notation>+ Must be one or more notations

<notation>? Notation is optional

Sample Program

Here we can see, through the representation of a parse tree, a possible case generated with
the help of the grammar rules stated previously:

Figure 1. Parse tree

Conclusion

To conclude, creating a Domain-Specific Language (DSL) for API documentation marks
an important step toward how we handle API interfaces. By implementing this specialized DSL,
both developers and technical writers can overcome the usual problems related to traditional
documentation methods. This approach brings a much-needed clarity, ensures a consistent style
across various APIs, and cuts down on the time and effort needed to keep documentation fresh and
accurate. With its well-defined grammar, semantic rules, and versatile output options—ranging
from HTML and Markdown to PDF—the DSL allows for systematic documentation production
that adapts easily to different needs. The introduction of this DSL could change the way developers

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor,
Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 27-29 martie 2024, Vol. II

- 910 -

and companies approach API documentation, making it a more intuitive and productive part of the
software development lifecycle, and allowing their resources to be diverged towards other
problems. This change does not only benefit technical users but also educators, project managers,
and others involved in the broader scope of the field of documentation and API use.

References

[1] “Domain-Specific Languages [Online]. Available:
https://www.jetbrains.com/mps/concepts/domain-specific-languages/

[2] “What is an API?” [Online]. Available: https://www.geeksforgeeks.org/what-is-an-api/
[3] “6 Best API Documentation Tools” [Online]. Available: https://blog.dreamfactory.com/5-

best-api-documentation-tools/
[4] “What is ANTLR?” [Online]. Available: https://www.antlr.org/

https://blog.dreamfactory.com/5-best-api-documentation-tools/
https://blog.dreamfactory.com/5-best-api-documentation-tools/

