
Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor,
Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 27-29 martie 2024, Vol. II

- 848 -

DOMAIN SPECIFIC LANGUAGE FOR DATA AND
FORMULAS VISUALIZATION

Roman GUSEV*, Tudor POPOV, Andrei CERNÎȘOV,

Dorin MALANCEA, Alexandr COVALENCO

Department of Software Engineering and Automatics, Group FAF-222, Faculty of Computers, Informatics, and

Microelectronics, Technical University of Moldova, Chișinău, Republic of Moldova

*Corresponding author: Roman Gusev, roman.gusev@isa.utm.md

Tutor/coordinator: Irina COJUHARI, conf. univ., dr., DISA

Abstract. In a data-driven world, the visualization of complex datasets and mathematical formulas

remains a critical challenge despite technological advancements. This article investigates these

challenges and introduces a proposed solution in the form of a Domain-Specific Language,

specifically for Data, such as Tabular Data from Excel Files or JSON Files, and Formulas, for

example Mathematical Expressions, visualization. This language aims to address data and

formula visualization in the form of different Graphical Representations, such as Bars or Graphs.

Some of this paper’s objectives are to describe the steps of the development of a Domain-Specific

Language with the mentioned functionalities and such input mechanics, that everyone will easily

understand how to work with it. Also, this paper aims to provide, through the proposed language,

a better and easier way to visualize information and get an extensive graph representation, along

with tabular representation, of the Formulas and Data that are provided by the user.

Keywords: ANTLR, Grammar, Graph, Lexer, Mathematical Expressions, Parser.

 Introduction
In an increasingly data-driven world, the ability to represent information graphically holds

significant importance across various sectors including finance, marketing, healthcare, and data
science. Motivated by the recognition of persistent difficulties in creating concise and expressive
visualizations despite technological advancements, the development of this DSL aims to bridge
the gap between complex data and accessible visualization, thereby enhancing the efficiency and
effectiveness of data-driven decision-making processes [1].

Also, this paper aims to deliver this DSL’s potential users a very user friendly and easy to
understand Language, that will be helpful in their daily working routine or in their research
projects. The relevance of this topic lies in its potential to simplify the process how data and
formulas are visualized and understood, offering a higher level of abstraction and simplicity. The
primary objective of this paper is to empower users across various domains to create visually
compelling representations of their data and formulas through a proposed DSL.

Problem Description
In the field of data visualization, there are big hurdles that make it tough to show and

analyze complex datasets and mathematical formulas properly. Even though technology keeps
getting better, the tools we have now often can't meet the varied needs of users in different areas.
Some of the main issues this DSL was designed to address are described further.

Managing large amounts of data can be tricky. It is hard to mix data from different places
and make sure everything works together well. This is especially tough in projects that cover many
subjects, where it's really important that data from different sources can work together smoothly
for the analysis and visualization to be successful. As the scale of data grows larger, visualization
tools often start to struggle, which makes people worry about whether these tools can handle really
big datasets, especially when one needs to process and show data in real time. Plus, a lot of these

mailto:roman.gusev@isa.utm.md

Technical Scientific Conference of Undergraduate, Master, PhD students,

Technical University of Moldova

Chisinau, Republic of Moldova, March 27-29, 2024, Vol. II

- 849 -

tools need a lot of computing power to show complex data, which means they're not very practical
in places where a limited amount of computing resources is available.

Moreover, showing complex formulas, especially those with lots of variables or that change
over time, is something many current visualization tools can't do well. This makes it hard to show
real-life situations accurately. Many areas need specific ways to show formulas that standard tools
just cannot offer. Without the ability to make these customizations, people often have to find
complicated workarounds or simplify their models too much, which means the visualizations are
not as accurate or helpful as they could be [2].

Another major problem is that many data visualization tools are hard to learn and use,
which keeps a lot of people, especially those who are not experts, from using them. Lowering the
entry barrier and making these tools easier to use for more people is crucial. In addition to that, a
significant part of visualization tools does not do a good job of letting users interact with the data,
which is a problem, because being able to dive into the data and play around with it leads to better
insights and understanding.

This DSL is designed to overcome these challenges by creating a solution that fits the needs of
data analysts, scientists, developers, students, business analysts and professionals in various fields. By
making it easier to present data, offering better ways to combine different data sources, providing
options to customize formula visualizations, making it more interactive and engaging for users, and
improving how well it can handle large data sets and perform well, this DSL aims to help users get
valuable insights from complex data and formulas in a more efficient and effective way.

 Stakeholders
This Domain-Specific Language can cater to a broad spectrum of stakeholders and

potential users, including data analysts, scientists, developers, business analysts, data engineers,
product managers, educators, researchers, business executives, freelancers, consultants, data
journalists, and UX/UI designers.

Data analysts and scientists form the backbone of data exploration and interpretation. This
language can cater to their needs by providing an intuitive and efficient platform for manipulating
and visualizing data.

Countability workers rely heavily on data visualization tools to analyze and interpret large
volumes of numerical data efficiently and accurately. Whether they are working in finance,
accounting, or any other field that requires meticulous data analysis.

Developers and programmers seek tools that seamlessly integrate data visualization into their
coding practices. The language that is described in this paper can provide a solution to this need by
offering a Domain-Specific Language that harmonizes coding logic with data representation.

Teachers and students seek tools that will help them in visualization of complex formulas
in mathematics and that can provide extensive features to operate with them. At the same time,
they are interested in working with large datasets and visualizing them in a suitable form for
manipulation, with further adjustments.

For stock traders, having access to clear and concise data visualization tools is paramount
for making informed investment decisions in an ever-changing market landscape. Stock traders
can seamlessly integrate complex financial data into their analytical workflow, allowing them to
create dynamic visualizations that highlight key metrics such as price movements.

Language Overview
 This DSL for visualizing data and formulas is built with Python. Python was picked for a

few key reasons - easy to use and clear code structure, wide range of tools and extensive features
for data handling.

The DSL uses a data-driven execution model, starting tasks when the data it needs is ready.
This fits well with the data centric nature of visualization tasks, letting users see their data
visualized as soon as they put it in.

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor,
Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 27-29 martie 2024, Vol. II

- 850 -

To provide extensive functionality and enhance the user experience, this project integrates
several libraries:

1. NumPy: a go-to for scientific computing in Python, NumPy lets you work efficiently
with complex data sets.

2. Pandas: built on NumPy, Pandas provides high-performance, easy-to-use data
structures and data analysis tools, enabling intuitive data manipulation and preparation
for visualization.

3. Matplotlib: a popular choice for data visualization in Python, Matplotlib lets users
create both static and interactive charts, graphs and other kinds of visualizations.

To support the diverse data formats encountered in real-world scenarios, a range of data
structures are utilized, including NumPy arrays, Pandas DataFrames, and classical Python data
structures like lists, dictionaries, and sets. The DSL can handle a wide range of input formats, such
as CSV, Excel, JSON, and text files, ensuring flexibility and compatibility with existing data
sources.

Building on top of Python and its rich set of tools allows this project to balance simplicity
with powerful features, helping users effectively visualize and gain insights from their data and
formulas, without requiring a high level of technical expertise from the target audience.

Grammar overview
Grammar for a programming language is a collection of rules that specify how statements

should be written in that language [3].
In programming languages, adherence to specific rules is imperative for code to function

correctly. These rules are encapsulated within a framework known as grammar, which defines the
language's syntax and structure. Broadly speaking, grammar outlines the rules that govern how
valid expressions, statements, variables, and keywords are constructed within the language.

In a grammar for some DSL, Start Term refers to the initial non-terminal symbol from
which the parsing of a language begins. It represents the starting point of the language’s syntax
tree or derivation process.

In this DSL, Grammar starts with this term:
Start Term – S = { <Program> }.
Terminal symbols are those that can occur in the outputs of a formal grammar’s production

rules but that the grammar’s rules are unable to modify. Recursively applying the rules to a source
string of symbols will typically result in a final output string that is exclusively made up of terminal
symbols.

For this language, Terminal Terms are the following:
Terminal Terms – Vt = { Data, Formula, dataset, name, if, else, range, while,

ReadFrom, ExportToFile, ExportToImage, VisualFormula, VisualData, graph, bar, pie,
hist, png, jpg, csv, txt, json, excel, console, ", #, ;, :, ,, (,), _, -, [,], *, ˆ, log, sqr, sqrt, fact, +, -
, ., ==, >, <, !=, >=, <=, {, }, /*, */, /, //, [a-z], [A-Z], [0-9] }.

Symbols that are not terminal can be swapped out. Another name for them would be
syntactic variables. Formal grammar has a start symbol, which is a named member of the set of
non-terminals from which all the language’s strings can be generated by applying the production
rules one after the other.

The set of terminal strings from which such a language can be derived is precisely the
language defined by grammar.

In this language, Non-Terminal Terms are the following terms:
Non-Terminal Terms – Vn: { <Program>, <CommandsList>, <Command>,

<IfStatement>, <WhileStatement>, <Comment>, <ReadCommand>, <ExportCommand>,
<VisualizeCommand>, <VariableName>, <Formula>, <ReadFrom>, <VisualizeFormula>,
<VisualizeData>, <Condition>, <VariableName>, <Expression>, <ReadFromFile>,
<FormulaContent>, <ExportToFile>, <ExportToImage>, <VisualizeData>, <VisualizeFormula>,

Technical Scientific Conference of Undergraduate, Master, PhD students,

Technical University of Moldova

Chisinau, Republic of Moldova, March 27-29, 2024, Vol. II

- 851 -

<PathTo>, <PathName>, <ImageType>, <PlotType>, <VisualizationType>, <FileType>,
<Operators>, <Digit>, <Integer>, <Float> }.

Since this DSL has a complex topic, Grammar was made as easy as possible for
understanding for all users of the DSL we develop. It has several conceptualized Rules that will
help the Language to be Tokenized and Parsed correctly.

Rules for the Grammar that will be presented below, follow classical Meta Notation for
Grammar Description (See Table 1):

Table 1

Meta Notation for Grammar Description
Symbol Meaning

<foo> means foo is a nonterminal.

foo
(in bold font) means that foo is a terminal i.e., a token
or a part of a token.

[x] means zero or one occurrence of x.

x* means zero or more occurrences of x.

x+ means one or more occurrences of x.

{} large braces are used for grouping.

| separates alternatives.

The following description is the set of Instruction/Rules that this Domain Specific

Language is based on:
Production Set – P = {

<Program> ::= <CommandsList>
<CommandsList> ::= { <Command>

| <IfStatement>
| <WhileStatement>
| <Comment> }+

<IfStatement> ::= if (<Condition>) {<CommandsList>}

 [else {<CommandsList>}];
<WhileStatement> ::= while (<Condition>) {<CommandsList>};
<Command> ::= <ReadCommand>;

| <ExportCommand>;
| <VisualizeCommand>;

<Comment> ::= /*{a-zA-Z0-9 /.}+ */
| #{a-zA-Z0-9 /.}+

<ReadCommand> ::= Data <VariableName> = <ReadFromFile>
| Formula <VariableName> = <FormulaContent>

<Condition> ::= <VariableName> <Expression> { <VariableName>

| <Digit> | <Integer> | <Float> }
<Expression> ::= == | != | > | < | >= | <=

<ReadFromFile> ::= ReadFrom (<PathTo>)
<ExportCommand> ::= ExportToFile (<PathTo>) <ExportToFile>

| ExportToImage (<PathTo>) <ExportToImage>

<ExportToFile> ::= dataset = (<VariableName>) name =
(<VariableName>.<FileType>)

<ExportToImage> ::= <PlotType>(<VariableName>) name =
(<VariableName>. <ImageType>)

<VisualizeCommand> ::= <VisualizeData> | <VisualizeFormula>

<VisualizeData> ::= VisualData (<VisualizationType>) dataset =
(<VariableName>)

<VisualizeFormula> ::= VisualFormula (<FormulaContent>) range =

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor,
Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 27-29 martie 2024, Vol. II

- 852 -

({<Digit>| <Integer> | <Float> },{ <Digit> | <Integer> | <Float> })
| VisualFormula (<VariableName>) range = ({<Digit> |
<Integer> | <Float> },{<Digit> | <Integer> | <Float> })

<VariableName> ::= {a-zA-Z_/}+{a-zA-Z0-9_/}∗
<PathTo> ::= "<PathName>"
<PathName> ::= {a-zA-Z0-9_/}+

<ImageType> ::= png | jpg

<FormulaContent> ::= {<VariableName> | <Operators> | (|)
| <Digit> | <Integer> | <Float>}+

<VisualizationType> ::= console | <PlotType>

<PlotType> ::= graph | bar | pie | hist
<FileType> ::= csv | text | json | excel
<Operators> ::= * | ˆ | log | sqr | sqrt | fact | - | +

<Digit> ::= {0-9}

<Integer> ::= [-]<Digit>+

<Float> ::= <Integer>.<Digit>+

}

Example Valid Code
In order to describe in a much better way how the syntax for this DSL is looking like, here

is provided an example of a “program” (See Figure 1), that was parsed by a parser implemented
using ANTLR.

Figure 1. Code Example - Data and Formulas Initialization

In this example is presented variable declaration and initialization, specifically - Data

variable that is called “tableData” and is read from a “.txt” file, alongside with a Formula variable,
called “formula”, that stores the mathematical expression (See Eq. (1)):

 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 = 𝑥2.2 + √𝑥 (1)

 Previously described code is a valid and correct program code that is fully parsed without

encountering any errors, which is described in the next section.

Tokens
 First step in every DSL is the tokenization, which is done by Lexer, also called Lexical

Analyzer. The lexical analyzer defines how the contents of a file are broken into tokens, which is
the basis for supporting custom language features [4]. In the above example are several tokens,
such as: ID, ASSIGN or OPERATORS tokens, that are a set of Lexemes with an assigned meaning
to them. Lexemes, on the other hand, are only some strings of characters known to be of a certain
kind. In the following image (See figure 2) are the tokens that were extracted from the input code

Technical Scientific Conference of Undergraduate, Master, PhD students,

Technical University of Moldova

Chisinau, Republic of Moldova, March 27-29, 2024, Vol. II

- 853 -

Figure 2. Tokens - Valid Program Code Example

 These Tokens give the language the possibility to give a meaning to the lexemes that it

encounters in the process of tokenization of an input program, but in order to maintain a correct
syntax structure of the code, it also requires another process to pass - Parsing.

Parse Tree
In order to parse the above program code (See Figure 1) and display it as a Tree, ANTLR,

which is responsible for Parser and Lexer generation, can provide a better view of the so-called
Parse Tree, which is a representation of the structure of a sentence or a string [5], based on the
Tokens and the above rules (See section “Grammar overview”).

Figure 3. Parse Tree - Valid Program Code Example

As it may be seen, there are clearly two separate read commands - for Data and Formula

declaration and initialization, and they both are parsed separately, based on their own rule, into
“smaller” Tokens, until it reaches a Terminal symbol that cannot be derived further, indicating that
there are no more Lexemes to parse and that there are no encountered syntactic errors in the Input
Program Code example.

Conclusions
All things considered, a domain specific language for data and formulas visualization can

simplify the process of investigation and analysis of different datasets and, at the same time,
mathematical expressions. This specific feature can be used to simplify the work of different Data
Analysts, financial workers, students and professors, that is based on the visual analysis of
different data sources.

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor,
Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 27-29 martie 2024, Vol. II

- 854 -

This DSL provides extensive possible utilities that may be used to transfer different
datasets from one format to another, visualize it in a better and more comprehensive way, so that
every user can easily understand what a piece of data is about.

At the same time, mathematicians and other scientific workers and researchers may be
interested in the visualization of different mathematical formulas, that is a commonly-used way of
proving different theories that include formulas.

Overall, this DSL's possible features may greatly improve the consistency, quality, and
automation of data visualization procedures, making it an invaluable resource for all workers that
are related with data analysis and mathematics.

References
[1] K. Smeltzer and M. Erwig, “A domain-specific language for exploratory data

visualization,” in Proceedings of the 17th ACM SIGPLAN International Conference on

Generative Programming: Concepts and Experiences, Boston MA USA: ACM, Nov.
2018, pp. 1–13. doi: 10.1145/3278122.3278138. Available:
https://dl.acm.org/doi/10.1145/3278122.3278138. [Accessed: Apr. 01, 2024].

[2] “DSL for Business Intelligence Visualization,” in Proceedings of 2016 the 6th
International Workshop on Computer Science and Engineering, WCSE, 2016. doi:
10.18178/wcse.2016.06.066. Available: http://www.wcse.org/WCSE_2016/066.pdf.
[Accessed: Apr. 03, 2024]

[3] Pietro, “What Is A Programming Language Grammar?” Compilers. Available:
https://pgrandinetti.github.io/compilers/page/what-is-a-programming-language-grammar/.
[Accessed: Apr. 12, 2024]

[4] “Lexical analysis,” Wikipedia. Mar. 16, 2024. Available:
https://en.wikipedia.org/w/index.php?title=Lexical_analysis&oldid=1214000313.
[Accessed: Apr. 13, 2024]

[5] “Parse Tree in Compiler Design,” GeeksforGeeks, Sep. 16, 2020. Available:
https://www.geeksforgeeks.org/parse-tree-in-compiler-design/. [Accessed: Apr. 13, 2024]

