RO.304.	
	Development of the biological approach for
Title EN	Holmium(III), Erbium(III), and Gadolinium(III)
	recovery from wastewater
Authors	Inga Zinicovscaia ^{1,2,*} , Liliana Cepoi ³ , Ludmila Rudi ³ ,
2 Yuthor 5	Tatiana Chiriac ³ , Dmitrii Grozdov ²
	¹ Horia Hulubei National Institute for R&D in Physics and
T (•/)•	Nuclear Engineering, Magurele, Romania
Institution	Joint Institute for Nuclear Research, Dubna
	Institute of Microbiology and Biotechnology, Technical
	University of Moldova, Unisinau, Moldova
	Rare-earth elements (REES) are released into the aquatic
	agriculture and can be harmful for living organisms. The
	untake of gadolinium(III) (one of the most studied REFs)
	holmium(III), and erbium(III) (two less well-examined
	elements) by the cvanobacterium Arthrospira platensis was
	evaluated. According to the results of the neutron activation
	analysis, Arthrospira. platensis demonstrated a relatively
	high accumulation capacity for the studied metal ions, which
	were in the following order: gadolinium(III) > holmium(III)
	> erbium(III). The accumulation of gadolinium(III) did not
	provoke a significant impact on the biomass productivity or
D	content of proteins, chlorophyll a, and β -carotene. The
Description	maintenance of the mentioned parameters on the level of the
	control biomass indicated the satisfactory physiological state
	concentrations of gadalinium(III) At the same time
	important quantitative changes occurred in the content of
	carbohydrates and phycobiliproteins. The changes in these
	two parameters in Arthrospira platensis were associated with
	stress, or at least with a significant external impact. In the
	cases of erbium (III) and holmium(III), a decrease in the
	biomass productivity and the content of phycobiliproteins
	and an increase in the content of carbohydrates indicated the
	potential toxic effects of lanthanides. Arthrospira platensis
	can be applied for the remediation of water containing REEs
	in concentrations that do not cause toxic effects on biomass.