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Abstract: Certain molecules act as biomarkers in exhaled breath or outgassing vapors of biological

systems. Specifically, ammonia (NH3) can serve as a tracer for food spoilage as well as a breath

marker for several diseases. H2 gas in the exhaled breath can be associated with gastric disorders.

This initiates an increasing demand for small and reliable devices with high sensitivity capable of

detecting such molecules. Metal-oxide gas sensors present an excellent tradeoff, e.g., compared

to expensive and large gas chromatographs for this purpose. However, selective identification of

NH3 at the parts-per-million (ppm) level as well as detection of multiple gases in gas mixtures with

one sensor remain a challenge. In this work, a new two-in-one sensor for NH3 and H2 detection

is presented, which provides stable, precise, and very selective properties for the tracking of these

vapors at low concentrations. The fabricated 15 nm TiO2 gas sensors, which were annealed at 610 ◦C,

formed two crystal phases, namely anatase and rutile, and afterwards were covered with a thin

25 nm PV4D4 polymer nanolayer via initiated chemical vapor deposition (iCVD) and showed precise

NH3 response at room temperature and exclusive H2 detection at elevated operating temperatures.

This enables new possibilities in application fields such as biomedical diagnosis, biosensors, and the

development of non-invasive technology.

Keywords: sensors; ammonia; hydrogen; PV4D4 polymer

1. Introduction

Modern technologies are advancing every day, and with them the medical field and
it’s diagnostic part, as well as the fields of health and food safety. To improve diagnosis,
it is helpful to link the patients health states with data obtained from different health
analyzing technologies. To improve diagnosis, it is helpful to link the patients’ health
states with data obtained from different health analyzing technologies. In this regards,
an interesting example of such an advance can be seen in a previous study [1] where a
system of computer-aided diagnostics improved the results of a plain X-ray using machine
learning. Another good example is an interpretable deep learning system in the study of
Kai Jin et al. [2], where the main goal was to classify the epiretinal membrane for different
optical coherence tomography devices, which, however, still needs further research, as its
potential demonstrated. As a matter of fact, even previous and further studies, which will
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be seen in this work, have as their main goal minimal to non-invasive diagnosis, where
much of the potential lies with gas detectors and sensors.

The introduction of novel gas detectors with rapid and efficient gas concentration
detection capabilities has been a major focus for different application fields [3]. One of
the current techniques that is being intensively developed is the breath test [4], which
uses different methods, technologies, and analytical systems. These include different
sampling injections methods and devices such as gas chromatographs (GC) but also sensor-
based devices. While the GC might be a convenient method for breath analysis, it cannot
detect H2 and is a rather expensive technique [5] compared to the field of fast-developing
metal-oxide-based sensors. Metal-oxide sensors appear in many different forms, such
as coated/uncoated with polymers [6], titanium carbide sensors [3], and many other
compounds, e.g., titanium. Human breath contains many biomarkers, and it can show an
entire series of different diseases and disorders [7–10].

However, there are not enough technologies and solid-state devices for the detection
of these tracers, even though a recent approach to the gas detecting methods is surface
plasmon resonance through optical means, where, for instance, a thin film of SnO2 and
polypyrrole (PPy) were prepared for sensing ammonia [11]. In the same working field,
another method for ammonia detection is shown in the study [12] through a colorimetric
analysis is used to visualize manipulations of the localized resonance of the surface Plasmon
band of silver nanoparticles. In this study, it was also shown that a smartphone can be
used as a rapid, inexpensive method for real-time detection of ammonia by monitorin
color intensity variations of an RGB analysis. In another study [13], a metal–organic
framework was used as a colorimetric sensor for ammonia detection. On the other hand,
metal-oxide-based sensors have yet to show their true potential and high efficiency through
fast gas detection, as they are coated with polymers for adapting to different measurement
conditions, therefore tuning up their properties. Many articles [5,7–10,14–16] offer a good
base for further development of H2 gas and NH3 vapor in human breath detectors based
on different sensors mostly because these two have shown a specific approach to diagnosis.
For instance, H2 gas is usually associated with gastric disorders such as lactose intolerance
and bacterial overgrowth within the small bowel and for diagnosing rapid passage of food
through the small bowel [5], while in food industry H2 is usually mentioned as a spoilage
factor to canned food [17]. NH3 vapor can usually be associated with kidney failure, which
can be characterized at its early stages by detection of its concentration in exhaled breath.
Another example of the use of NH3 detection is its recognition as a biomarker in the field of
hepatic kidney diseases [18]. On the other hand, NH3 gas also serves as a spoiling marker
for food rich in proteins [19]. Thus, further development of H2- and NH3-detecting sensors
is required, as they provide a growing potential for enhanced detection and analysis in the
biomedical diagnosis field.

While many authors are developing new methods for NH3, H2, and other vapor/gas
detection [3,5,18], in this study, a sensor based on a TiO2 nanolayer fully covered with
a Poly(1,3,5,7-tetramethyl-tetravinylcyclotetrasiloxane) (PV4D4) thin film is proposed as
a two-in-one sensor with high potential for NH3 and H2 gas detection. The PV4D4 thin
film on top of the sensor was fabricated by initiated chemical vapor deposition (iCVD) in
the same way as in our previous study [6]. Attributed to its solvent-free nature and CVD-
typical growth characteristics, the iCVD process enables a precise coverage of good-quality,
tailored polymer nanolayers on the lower nanoscale on specimens with a large surface area
or on more complex geometries [20,21] such as the TiO2 structures in this study. TiO2 has
been proven in several articles as a compatible H2 detector. It shows a series of responses
to different gases such as 2-propanol, n-butanol, ethanol, and acetone [22]. Consequently,
the challenge is to maintain a high selectivity for H2. In another study, thin nano-sprayed
layers of TiO2 show a variation in responses depending on the film thickness [23], having a
high selectivity for H2 at 15 nm but without a clear response to NH3. At 20 nm thickness,
it shows a better response to NH3 but is still lacking high selectivity towards H2. In this
context, some authors have reported on the functionalization of the sensor with different
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noble metals such as Au [23], while others have coated sensors with a conductive polymer
layer [24]. Our previous study [6] showed impressive results of the influence of iCVD-
deposited PV4D4 thin films and their influence on the sensor performance. It can improve
the selectivity for different gases regarding different structures.

The motivation to use a PV4D4-coated TiO2 gas sensor in this study is to demonstrate
a potential two-in-one sensor and its protection from ambient and efficiency. The developed
two-in-one sensors exhibit high selectivity for certain gases at relatively low operating
temperatures and high selectivity for other gases at higher operating temperatures. Since
the applied polymer layer on top of the TiO2 films shows an effect on the selectivity of
H2 and NH3, depending on the working temperature, it can be applied as a potential
two-in-one sensor for breath analysis. Although further studies on different biomarkers
related to different diseases and disorders are needed, the proposed sensor can provide
new pathways in the field of medical diagnosis and the development of non-invasive
technology.

2. Materials and Methods

2.1. Sample Production

TiO2 nanolayers were spray-pyrolysis grown on the surface of a glass substrate, as
described in reference [23]. Next, all specimens were placed on a thermal heating plate,
where we maintained the temperature at 450 ◦C for 25 min before the start of the spray-
pyrolysis experiment, as mentioned previously by Pauporté et al. [23,25]. For the spray-
pyrolysis solution, we used 7.1 mL isopropanol, 0.62 mL of titanium(IV) isopropoxide
(TTIP), and 0.41 mL of acetylacetone in a mixture. The carrier ambient involved was an air
flux, which was selected, as earlier reported, to gust the mixed aerosol directly onto the top
of specimen, which was kept on the heated hot surface at 450 ◦C during the entire spray
process [23,25]. The spray process of TiO2 layers was followed by a post-growth thermal
annealing at 610 ◦C for 60 min in air.

After the TiO2 gas sensor fabrication and thermal treatment, a 25 nm PV4D4 nanolayer
was grown on top of the sensors. The sensors were transferred to a iCVD reactor reported
elsewhere [6,26] and custom built for this purpose. The reactor was evacuated by a rotary
vane pump (Duo 10, Pfeiffer Vacuum). For the PV4D4 thin film deposition, flowrates of
0.2 sccm 1,3,5,7-tetramethyl-tetravinyl cyclotetrasiloxane (V4D4, Abcr, 97%) and 0.1 sccm
Perfluorobutanesulfonyl fluoride (PFBSF, Chempur, 95%) were introduced to the reactor
via needle valves. A process pressure of 40 Pa was maintained by a butterfly valve (615,
VAT). The pressure was monitored by a capacitive manometer (Baratron, MKS instruments).
In order to facilitate monomer adsorption on the samples, the specimen stage was heated
to 32 ◦C by a thermostat (K6, Huber). A power of 44 Watts was applied to a NiCr filament
array inside the reactor to start the deposition process. Additional PV4D4 thin films were
also deposited on a silicon wafer for further chemical characterization as reference samples.

2.2. Computational

Similar to our previous study, the D4 molecule was chosen as a representative to
estimate the dimension of the cyclotetrsiloxane rings in the PV4D4 polymer. The oc-
tamethylcyclotetrasiloxane (D4) molecule was first edited and pre-geometry optimized
using a molecular editor (Avogadro 1.2). The applied force field was a universal force
field (UFF). Density functional theory (DFT) was performed with the molecules to predict
the molecular distances. For this purpose, another geometry optimization was performed
via NWCHEM [27]. The geometry optimization was performed on the B3LYP/cc-pVDZ
level and on the B3LYP/6-31G* level. The final results were illustrated and analyzed by a
molecular visualizer (Jmol 14.31.34).

2.3. Sample Characterization

Fourier-transform infrared (FTIR) spectra were recorded using a FTIR spectrometer
(Invenio-R, Bruker, Billerica, MA, USA) in transmission mode. The area from 400 cm−1
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Appendix A
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Figure A1. (a) SEM images of the TiO2 structure with PV4D4 polymer at scale of 100 nm; SEM images

of the TiO2 structure without PV4D4 polymer at scale of (b) 100 nm and (c) 400 nm.

tt

tt

 

 

Figure A2. (a) Gas response versus operating temperatures for TiO2 sensor with PV4D4 coating

on top to 100 ppm of gas/vapor (H2, NH3, n-butanol, acetone, ethanol, 2-propanol, and methane);

(b) current-voltage characteristic at operating temperature of 350 ◦C of TiO2 covered with PV4D4

polymer and gold contacts.
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