
727

ISSN 0025-6544, Mechanics of Solids, 2023, Vol. 58, No. 3, pp. 727–747. © Allerton Press, Inc., 2023.
ISSN 0025-6544, Mechanics of Solids, 2023. © Allerton Press, Inc., 2023.
Russian Text © The Author(s), 2023, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Tverdogo Tela, 2023, No. 3, pp. 73–98.

Regularities of Changing the Limiting Values of Stress
and Strain Invariants in Microinhomogeneous Media

V. Yu. Marinaa,*
aTechnical University of Moldova,

Chisinau, MD-2004 Republic of Moldova
*e-mail: vasilemarina21@yahoo.com

Received February 22, 2022; revised July 19, 2022; accepted July 25, 2022

Abstract—By using nonlinear equations of constraints between macro- and micro-states, the regular-
ities of changes in the limiting values of stress and strain invariants in microinhomogeneous media are
studied. It is shown that the extreme relative moduli of stress tensor deviators in polycrystals with a
cubic lattice are invariant with respect to external conditions of reversible force and depend only on
the crystal anisotropy factor. In the irreversible region of deformation, analytical relations are obtained
for bulk and tensile normal stresses. The effect of cyclic change in bulk and tensile stresses in some sub-
elements under external monotonic loading has been established. It is shown that, on the basis of non-
linear equations of constraints, a complex pattern of material failure can be described using the theory
of maximum normal stresses at the local level.
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INTRODUCTION
The successes achieved in describing the complex phenomena occurring during the deformation of

microinhomogeneous materials demonstrate that the most constructive fundamental concepts include
the idea according to which the representative volume of a macroscopically homogeneous body is repre-
sented as an infinite number of interconnected subelements with different thermorheological properties.
The models proposed by various authors differ from each other in the accepted relations between local
stress  and strain tensors  and macroscopic stresses  and strains . Most authors limit themselves to
the assumption of a uniform deformed state of subelements  or a uniform stress state . The
first multi-element model of the medium was developed by Mazing [1]. In this model, the process of
deformation of a body element is simulated as the deformation of a finite number of rods of the same stiff-
ness, which have the properties of ideal plasticity with different yield strengths and have the same defor-
mation, which made it possible to describe the Bauschinger effect quite accurate. Assuming the constancy
of deformation inside a polycrystalline body, Voigt [2] calculated macroscopic elastic constants based on
the elastic constants of crystals. Reiss [3] obtained formulas for calculating the elasticity constant of a
polycrystal based on the assumption of constant stresses. An extension of the model  to viscoplastic
processes of deformation of an initially isotropic material, which reveals the anisotropy of strain harden-
ing, aftereffects, and secondary creep, is contained in [4]. Usually, for this area of research, the structural
models is used [5–9]. To analyze the behavior of materials under thermomechanical effects, models based
on the maintenance of internal variables are also used [10]. The study of the plastic f low of polycrystals
that is obtained from the behavior of single crystals, was carried out by Sachs (1928) and Taylor (1938).
Both confirmed important predictions of the behavior of polycrystals. However, due to very simple under-
lying assumptions, most of their results are qualitative and allow only rather weak agreement with exper-
imental data.

Kroner [11] opened a new way with the formulation of the so-called “self-consistent scheme”, refer-
ring to the problem of inclusion in an infinite matrix. According to his scheme, each grain of a polycrystal
is sequentially considered as an inclusion in the “matrices” of all other grains. Then, the behavior of the
polycrystal is calculated using some adequate averaging over all grains. As a result, he established the fol-
lowing linear law of interaction
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where G is the shear modulus, ν is the Poisson’s ratio. The Kroner model satisfactorily agrees with the
experimental data in the elastic region of deformation, however, in the irreversible region it leads to over-
estimated internal stresses.

To take into account the natural tendency of the material to reduce stress f luctuations inside a repre-
sentative volume , Berveiller and Zaomi [12] introduced the so-called “plastic accommodation func-
tion” into the analysis. Such an approach is possible only if the isotropic elastoplastic interaction between
the inclusion and the matrix is limited. In this model, the parameter B decreases with increasing plastic
strain by almost two orders of magnitude in uniaxial tensile testing of single-phase polycrystalline mate-
rials. Further development of multi-element models in the framework of linear relations between fluctu-
ations of stress and strain tensors is associated with the development of various methods for determining
the parameters  and  [12, 13, etc.]. A weak point of research in this area is the inconsistency of the lin-
ear equations of constraints of macro- and micro-states with the first law of thermodynamics1

for any options for changing the parameters B and , except for the limiting ones:  or
. It is problematic to use models based on linear constraint equation to describe the processes

of destruction or the interaction of thermal and mechanical fields in the framework of a constrained the-
ory. The absence of a relation between the deviatoric and spherical quantities leads, in particular, to the
prediction of the impossibility of fracture under pure compression, which is inconsistent with experiment.
Discussion of various theories based on linear constraint equations of macro- and micro-states is the
scope of this article.

Since we cannot take into account in full measure the interactions of material particles in a represen-
tative volume, it is expedient to construct the constraint equations of macro- and micro-states, which
would be consistent with the laws of thermodynamics, take into account the phenomenon of self-consis-
tency of local processes of irreversible deformation, and meet the condition of uniqueness of the solution
of the problem of representing the material in the model [8]. Due to the fact that the linearity of the rela-
tion between local and macroscopic parameters follows from the formulation of the problem of inclusion
in an infinite matrix, in [7, 8, 14, 15] a different approach was proposed to construct the constraint equa-
tions between macro- and micro-states. As the primary element of the structure, a subelement, which is
identified with a set of material particles inside a representative volume that have the same irreversible
strain tensor, is chosen. Particles of the same subelement can have different orientations and positions in
the space of the conglomerate. The number of particles in each subelement determines their weight and
does not change during deformation. From this definition of the concept of a subelement, more complex
interactions of material particles in a representative volume follow than the interaction of an inclusion
with a matrix. Stresses and reversible strains in a subelement correspond to the average values of stresses
and strains arising in a subset of material particles with the same irreversible strain tensors. Due to this
circumstance, it is postulated that interactions between subelements are formed under the influence of
only averaged connections. It is assumed that the medium continuity condition is ensured by the action
of five independent slip systems. The experimentally established non-basic slip makes it possible to
describe the scalar and tensor properties of materials in the irreversible region of deformation in terms
common to Mechanics of a Deformable Solid. The model proposed in [7, 8, 14–16] is based on the fol-
lowing principles: averaged bonds, orthogonality of stress and strain f luctuation tensors, extremum of dis-
crepancy between macroscopic measures and suitable average values of microscopic analogues. The con-
structed closed system of equations satisfies the laws of thermodynamics, takes into account the phenom-
enon of self-consistency of local processes of irreversible deformation, and meets the requirement for the
uniqueness of the solution of the problem of representing a real material in a model. A detailed study of
the system, which also contains the rule of discrete mechanical memory of the material about the set of
characteristic moments of the prehistory of deformation and heating, in the case of cyclic proportional

1 Marina V. Yu. A multi-element model of the medium that describes variable complex non-isothermal loading processes. Diss. … Dr.
Sci. in Physics and Mathematics. Kyiv, 1991. 361s
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nonisothermal deformation of unstable materials, was carried out in [16]. The general patterns of behavior
of materials sensitive to the strain rate were studied in [14–16, etc.].

In the listed articles [7–9, 14–16], only deformation processes are studied without taking into account
the processes of initiation and accumulation of microcracks, which lead to the destruction of a body ele-
ment. In this article, along with the yield criterion, we also consider the condition for the destruction of
subelements. Irreversible deformations lead to an increase in crystal lattice defects, an increase in the level
of stresses and prepare the metal for destruction, while normal tensile stresses lead to destruction. There-
fore, for a joint consideration of the processes of deformation and destruction, it is necessary to study the
pattern of change in the limiting values of the three stress/strain invariants in the set of subelements.

1. PRINCIPLES OF TRANSITION FROM MICRO-STRESSES
AND STRAINS TO MACRO-STRESSES AND STRAINS

To describe the behavior of a disordered medium, the fundamental concepts of stress and strain tensors
are introduced at two levels: the level of material particles ( ) and macroscopic level ( ). Based on
the geometric Cauchy equations and the equilibrium equation,

as well as boundary conditions on the surface  of the volume element 

R. Hill [17] established the following constraint equations between micro and macro states

(1.1)

(1.2)

where · is the sign of averaging over volume. Equations (1.1), (1.2) are necessary but not sufficient for
constructing a system of constitutive equations at the macroscopic level based on physical relations at the
microscopic level.

Three Hill equations (1.1), (1.2) can be represented as a single expression [5, 7]

(1.3)

It can be seen from (1.3) that the average value of the scalar product of stress and strain tensor f luctu-
ations in a representative volume is annulled. From experience it is known that the mechanisms of defor-
mation in polycrystalline materials lead to the process of self-consistency (coherence) of the processes of
deformation and loading. To take into account the phenomenon of self-consistency of deformation pro-
cesses, the authors of [8] proposed the principle of averaged bonds: interactions between subelements in
a conglomerate are formed under the influence of only averaged bonds. Based on this provision, in [9, 14],
the postulate of the orthogonality of the stress and strain f luctuation tensors in each subelement are
adopted

(1.4)

Expanding in (1.4) the stress and strain tensors into deviatoric and spherical components
, , we establish the first type of macro- and micro-state constraint equations

(1.5)

For f luctuations of the deviatoric components, we set the following

(1.6)

where B is an internal parameter containing information about the microscopic characteristics of subele-
ments

Equations (1.1), (1.2) show that the averaging over the volume of stresses, strains, and their products
depends uniquely on the data on the surface of the representative volume. However, not all microscopic
variables have this specific property. In particular, it is shown in [8] that the natural macromeasures of the
energy of volume and shape change differ from the averaging over the volume of their micromeasures. To
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lished patterns show that the case of  characterizes ductile fracture, and the case of  charac-
terizes a mixed type of fracture. Depending on the values of the elastic limits of material particles, the
same metal can be brittle or plastic. It is known from experiment that brittle fracture occurs in the case of
a sharp increase in the elastic limit with a decrease in temperature (an increase in the loading rate also acts
in the same direction). At the same time, for a sharp change in plasticity, no noticeable changes in any
other physical properties of the material are required.

CONCLUSIONS
It is shown that the extreme relative moduli of the stress and strain tensor deviators in a set of grains

included in a representative volume of a polycrystal with a cubic lattice are invariant under external con-
ditions of reversible action and depend only on the crystal anisotropy factor.

It has been established that the form of the stress/strain tensor deviator in crystals with extreme values
of the moduli of the stress/strain tensor deviators coincides with the macroscopic form of the stress/strain
deviator.

Regularities of changes in bulk stresses in a representative element of a polycrystal have been studied.
The limits of f luctuations of bulk stresses and strains in polycrystals with a cubic lattice are established.

The general patterns of change in the limiting values of the moduli of the stress tensors and bulk stresses
in the system of subelements into the irreversible region of deformation are studied.

The formula is obtained for calculating the highest normal stress arising in the system of subelements
for an arbitrary type of stress state at the macroscopic level. The quantitative and qualitative differences in
the patterns of change in the highest normal stress for two, physically admissible, roots of the orthogonal-
ity equation for f luctuations of stress and strain tensors are analyzed.

Detailed numerical studies of the patterns of change in tensile stresses in a variety of subelements
depending on the amount of accumulated irreversible deformation have been carried out. It has been
established that, depending on the sign of the root, two options are possible: the greatest tensile stress
occurs in the adjacent subelement separating the current zone of irreversibly deformed subelements from
the reversible zone ( ) or in the subelement with the lowest elastic limit ( ). It is shown that in
the case in each subelement, the greatest normal stress occurs at the moment of onset of yield, then a
decrease is observed with an increase in irreversible deformation. In this case, the danger of destruction
of the subelement is bypassed after the onset of yield. Depending on the strength characteristics of the sub-
elements for , all variants of destruction are possible. If  only ductile fracture is possible.

The effect of cyclic change of the highest normal stress in the part of subelements under monotonic
macroscopic loading has been established. In this case, a change in the sign of the normal stress in the sub-
element in the process of a monotonous external action is detected for both variants of the root of the
orthogonality equation.
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