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Abstract: GaSxSe1−x solid solutions are layered semiconductors with a band gap between 2.0 and

2.6 eV. Their single crystals are formed by planar packings of S/Se-Ga-Ga-S/Se type, with weak

polarization bonds between them, which allows obtaining, by splitting, plan-parallel lamellae with

atomically smooth surfaces. By heat treatment in a normal or water vapor-enriched atmosphere,

their plates are covered with a layer consisting of β–Ga2O3 nanowires/nanoribbons. In this work,

the elemental and chemical composition, surface morphology, as well as optical, photoluminescent,

and photoelectric properties of β–Ga2O3 layer formed on GaSxSe1−x (0 ≤ x ≤ 1) solid solutions

(as substrate) are studied. The correlation is made between the composition (x) of the primary

material, technological preparation conditions of the oxide-semiconducting layer, and the optical,

photoelectric, and photoluminescent properties of β–Ga2O3 (nanosized layers)/GaSxSe1−x structures.

From the analysis of the fundamental absorption edge, photoluminescence, and photoconductivity,

the character of the optical transitions and the optical band gap in the range of 4.5–4.8 eV were

determined, as well as the mechanisms behind blue-green photoluminescence and photoconduc-

tivity in the fundamental absorption band region. The photoluminescence bands in the blue-green

region are characteristic of β–Ga2O3 nanowires/nanolamellae structures. The photoconductivity of

β–Ga2O3 structures on GaSxSe1−x solid solution substrate is determined by their strong fundamental

absorption. As synthesized structures hold promise for potential applications in UV receivers, UV-C

sources, gas sensors, as well as photocatalytic decomposition of water and organic pollutants.

Keywords: chalcogenides; solid solutions; Gallium(III) trioxide; thin films; single crystals; optical

properties; photoluminescence; photosensitivity

1. Introduction

Gallium oxide (Ga2O3) is an ultra-wide band gap emerging semiconductor material,
showing a well-marked polymorphism [1,2]. Currently, there are six confirmed Ga2O3

polymorphs with different crystal structures and crystallization temperatures: α–Ga2O3

with rhomboidal lattice, β–Ga2O3—monoclinic, γ–Ga2O3—cubic defective spinel-type
structure, δ–Ga2O3—cubic, ε–Ga2O3—orthorhombic, and k–Ga2O3 polytype, also with
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orthorhombic lattice [3–6]. In particular, k–polytype was identified in β–Ga2O3 layers
subjected to energetic ion bombardment [6–8].

At temperatures greater than 870 ◦C, the α, γ, δ, and ε phases change to monoclinic
β–Ga2O3, with stable structure and physical properties through the whole temperature
range up to the melting point [7–9].

The β–Ga2O3 is an n-type semiconductor with an ultra-wide energy band gap (4.9 eV),
displaying considerable application prospects in ultraviolet (UV) optoelectronics [10–13]
and high-performance electronic devices [14–16]. Recent studies have demonstrated that
micro- and nanostructured β–Ga2O3 and related nanocomposites are promising materials
for gas sensing applications and photocatalytic degradation of hazardous organic pollu-
tants. In [17], the β–Ga2O3/Al2O3 nanocomposite was synthesized by a hydrothermal
method with further calcination of Al(NO3)3·9H2O and Ga(NO3)3·xH2O compositions.
The tested response of this composite material on exposure to NOx (about 100 ppm concen-
tration) was ~58%. Nanocomposites with nanostructured oxide semiconductors β–Ga2O3,
SnO, or β–Ga2O3/reduced graphene oxide (rGO) exhibit high sensitivity to molecular
gases (O2, H2), along with flammable and toxic chemical compounds, such as H2S, CO2,
NH3, etc. [18,19].

The critical breakdown electric field of semiconductor material is an important phys-
ical parameter, determining the technical and application characteristics of electronic
devices (diodes, transistors, switches, etc.). For gallium oxide, a critical field with the
value f 8 MV/cm was reported in [20]. By doping β–Ga2O3 with Zn, it can be increased
up to 13.2 MV/cm. High values of the breakdown field determine the technical power
parameters of field effect transistors [21,22].

The application area of wide-gap semiconductors is enlarged with the transition
from bulk single crystals to micro- and nanocrystals. Several manufacturing technologies
of β–Ga2O3 nanoformations (nanowires, nanoribbons, nanoparticles) are known. An
extensive review of these methods is presented in the recent paper [23]. Nanostructured
β–Ga2O3 was obtained in [24,25] by heat treatment of GaN powder and plates in nitrogen
(N) flow at temperatures in the range of 850–1100 ◦C. In [24], obtaining, through the same
technological procedures, micrometer-sized GaN grains coated with β–Ga2O3 micro- and
nanoformations was reported.

Group-III monochalcogenides, MX (M = Ga, In, X = S, Se, Te), belonging to the class
of lamellar III-VI semiconductors, are quasi-two-dimensional (2D) materials that exhibit
unusual physical properties (high mobility of electric charge carriers, wide photoresponse
bands, marked anisotropy of electrical, and optical properties, etc.). The GaSe and GaS,
together with their solid solutions (GaSxSe1−x), are typical and outstanding representatives
of this class of materials.

The GaSe plates, kept for a long time in a normal atmosphere, are covered with a
layer composed of gallium oxides [26]. The oxidation process of GaS and GaSe lamel-
lae at high temperatures was studied in several works [27–30]. By conducting a heat
treatment of GaS plates in argon flow at temperatures in the range of 700–900 ◦C, mi-
crosheets of β–Ga2O3 are formed on their surface [29]. Additionally, β–Ga2O3 nanowires
and nanoribbons were obtained by high-temperature (≥900 ◦C) heat treatment of GaSe
plates in argon/airflow [30,31].

Under certain technological conditions, β–Ga2O3/Ga2Se3 and β–Ga2O3/Ga2S3 nanocom-
posites can be obtained, which are prospective materials for expanding the application area
of Beta–Gallium Oxide.

Depending on the arrangement of elementary Se(S)-Ga-Ga-Se(S) planar packings
with respect to each other, four polytypes (α, β, γ, and ε) of GaSe single crystals were
distinguished. The GaSe and GaS single crystals obtained by the Bridgman technique
correspond to the ε and β phases, respectively. The layered compounds GaS and GaSe are
known to form a continuous series of GaSxSe1−x (0 ≤ x ≤ 1) solid solutions. In Refs. [32,33],
appealing to X-ray diffraction (XRD) analysis and Raman spectroscopy, it was demonstrated



Nanomaterials 2023, 13, 2052 3 of 19

that ε and β phases predominate in 0 ≤ x ≤ 0.01 and 0.5 ≤ x ≤ 1 composition, respectively,
while the γ phase is characteristic for single crystals with the composition 0.05 ≤ x ≤ 0.40.

In this work, the chemical and elemental composition, surface morphology, light
absorption in the region of the fundamental absorption edge, photoluminescence (PL), and
photoconductivity of the layer formed by the heat treatment of single crystalline GaSxSe1−x
solid solutions in a water vapor-rich atmosphere (AVH2O) at a temperature of 900 ◦C
are studied.

2. Materials and Methods

The samples under investigation are micro- and nanocomposite structures based on
β–Ga2O3 on single crystal GaSxSe1−x solid solutions (0 ≤ x ≤ 1) as substrates. Single
crystals with x = 0, 0.17, 0.50, 0.80, 0.95, and 1 compositions were prepared by a modified
Bridgmann-Stockbarger technique. The synthesis of compounds from chemical elements
Ga (5N), Se (5N), and spectrally pure S, taken in stoichiometric amounts, and the prepara-
tion of single crystals were performed in a three-zone (zone I, zone II, and zone III) furnace.
Initially, the furnace axis is tilted at ~30 degrees towards the horizontal, and the foil with
Ga, S, and Se is placed in sectors I and II. The temperature in sector II was increased slowly
at a rate of 100 ◦C/h, up to 1100 ◦C, while in sector I, it is maintained at the melting point
of Se (S). As the amount of condensate at the outer, cold end of the ampoule decreases, the
temperature in sector I increases at a rate of ~50 ◦C/h up to ~1200 ◦C. At this temperature,
for 20 g of substance in the ampoule, the synthesis took about 6 h. Throughout the synthesis,
the ampoule was subjected to mechanical vibrations with a frequency of ~50 Hz.

Thereafter, the melting furnace was moved vertically, its sector III set to ~700 ◦C, and
the melt ampoule proceeded through the temperature gradient between sectors II and III,
with a speed of ~1 mm/h. After the melt solidified, the temperature in the furnace was
decreased at a rate of ~100 ◦C/h down to ambient temperature.

From as-synthesized bulk single crystal ingots, through mechanical splitting perpen-
dicularly to the C6 axis, plane-parallel plates with thicknesses between 20 and 500 µm have
been obtained. They were heat treated in an AVH2O, using a tube furnace with a MoSi2
heating element at temperatures from 850 to 920 ◦C for 1–6 h.

The structure, composition, and surface morphology of the samples under study
were investigated by XRD, Energy Dispersive X-ray Spectroscopy (EDXS), and Raman
spectroscopy, as well as Scanning Electron Microscopy (SEM).

The XRD patterns (CuKα radiation, λ = 1.5406 Å) of the samples were recorded in
the 2θ angular range of 20–90◦ with an angular resolution of 0.02◦, using a PANalytical
Empyrean diffractometer, in Bragg-Brentano (θ–2θ) geometry. Raman spectroscopy mea-
surements were performed at room temperature in the backscatter configuration (180 deg),
with a WITec alpha300 R spectrometer using an Ar+ ion laser (wavelength λ = 480 nm
and power of ~2 mW) as excitation light source. The spectral frequency resolution of
measurements was ~2 cm−1.

The morphology of the samples surface was examined by SEM-EDX, using a Zeiss
Ultra Plus electron microscope (7 kV, 10 µA) equipped with an EDX analysis system [a Si/Li
detector (Noran, Vantage System)]. Diffuse reflectance spectra of the surface of micro- and
nanostructured β–Ga2O3 layer on single crystal substrate (GaS, GaSe, and GaSxSe1−x solid
solutions) have been recorded with a Specord M-40 spectrophotometer with a spectral en-
ergy resolution of 0.5 meV, equipped with accessories for diffuse reflectance measurements
at an angle of 90◦ to the incident beam.

Photoluminescence spectra were recorded with a specialized photometric setup which in-
cluded a high-power MDR-2 monochromator with diffraction gratings (600 and 1200 mm−1),
equipped with a photomultiplier with multi-alkali[(Na2K)Sb + Cs] photocathode with a
quartz window. A 200 W argon vapor lamp (UV-C light source) and a DRS-500 filtered mer-
cury lamp (wavelength λ = 546 nm) were used as excitation sources of photoluminescence
and photoconductivity of the samples under study. The photocurrent in the circuit was
recorded with a V7-30 microvoltmeter-electrometer.
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4. Conclusions

The lamellar semiconductors in the series of GaSxSe1−x solid solutions exhibit a
bandgap in the range of 1.98–2.58 eV. By using a heat treatment of respective single crystals
in AVH2O at temperatures between 750 and 900 ◦C, homogeneous layers consisting of
β–Ga2O3 nanowires/nanosheets with micrometric lengths are obtained. Depending on the
heat treatment temperature, β–Ga2O3 layers with monoclinic crystal lattice are obtained,
but also nanocomposite layers formed by β–Ga2O3 and Ga2Se3/Ga2S3 crystallites with
submicrometric dimensions. The direct band gap of the β–Ga2O3 layer depends on the
composition (x) of GaSxSe1−x solid solution and was found in the range of 4.52–4.82 eV.
The β–Ga2O3 and β–Ga2O3/Ga2Se3/Ga2S3 nanocomposite layers are photoluminescent
materials in the UV–blue region. Resistive detectors based on nanostructured β–Ga2O3

layers show high sensitivity in the UV-C region (230–270) nm. The photocurrent obtained
by irradiating the surface with a 254 nm beam is higher than the dark current by more than
two orders of magnitude.
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