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Abstract: Certain biomarkers in exhaled breath are indicators of diseases in the human body. The

non-invasive detection of such biomarkers in human breath increases the demand for simple and

cost-effective gas sensors to replace state-of-the-art gas chromatography (GC) machines. The use

of metal oxide (MOX) gas sensors based on thin-film structures solves the current limitations of

breath detectors. However, the response at high humidity levels, i.e., in the case of exhaled human

breath, significantly decreases the sensitivity of MOX sensors, making it difficult to detect small

traces of biomarkers. We have introduced, in previous work, the concept of a hybrid gas sensor,

in which thin-film-based MOX gas sensors are combined with an ultra-thin (20–30 nm) polymer

top layer deposited by solvent-free initiated chemical vapor deposition (iCVD). The hydrophobic

top layer enables sensor measurement in high-humidity conditions as well as the precise tuning of

selectivity and sensitivity. In this paper, we present a way to increase the hydrogen (H2) sensitivity of

hybrid sensors through chemical modification of the polymer top layer. A poly(1,3,5,7-tetramethyl-

tetravinylcyclotetrasiloxane) (PV4D4) thin film, already applied in one of our previous studies, is

transformed into a silsesquioxane-containing top layer by a simple heating step. The transformation

results in a significant increase in the gas response for H2 ~709% at an operating temperature of

350 ◦C, which we investigate based on the underlying sensing mechanism. These results reveal new

pathways in the biomedical application field for the analysis of exhaled breath, where H2 indicates

gastrointestinal diseases.

Keywords: sensors; tuning; hydrogen; PV4D4 polymer; silsequioxane cage; functionalized; breath

1. Introduction

Certain molecules in exhaled breath are biomarkers and indicators of diseases. Recent
analyses and studies have concluded that all humans generate a unique profile of volatile
organic compounds (VOCs) in exhaled breath, which is a product of different metabolic
activities in the human body [1–3]. Thus, any change in the VOC profile has the potential
to confirm a particular disease. Consequently, their detection has attracted much interest
in biomedical research. A non-invasive method is desired, allowing for a simple and
cost-effective analysis of exhaled breath. As stated in various papers, at this time, non-
invasive diagnostic methods such as gas chromatography/mass spectrometry (GC/MS) are
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considered to be the most accurate methods for obtaining a painlessly collected, extremely
simple and non-invasive human breath sample [1,4].

However, this method faces many limitations due to its high cost requirements, includ-
ing skilled technicians, the cost of GC/MS itself and the time required to analyze a sample.
One approach to address these challenges is the development of metal oxide (MOX)-based
gas sensors, which are capable of detecting low concentrations of various biomarkers/gases
in human breath. More and more research studies are emerging in this direction. Recently,
Lijuan Fu et al. reported a Co3O4/TiO2 core–shell with high performance for the biomarker
acetone [5]. In another study, Aasi et al. investigated atomically thin MoS2 decorated with
Pt or Pd as a promising material for colorectal cancer detection [6]. A recent review provides
a comprehensive summary of the different biomarkers and the respective metal–organic
frameworks applied for their detection [2]. One way to improve MOX sensors is to deposit
different polymers on top of the sensors and anneal them at different temperatures to
increase their properties, such as sensitivity and selectivity. A recent study presented a
Cu-S semiconductor nanocomposite coated with a polyaniline nanocomposite applied for
H2S sensing [7]. As a result, it was concluded that the mechanism for improved sensing
performance may be attributed to conductive composite networks. Another study obtained
a Sb2Te3 sensor with polystyrene which resulted in good results for hydrogen sensing [8].
Some researches went further and demonstrated a wearable ethanol-sensing structure
based on Ti3C2Tx followed by functionalization using pyrrole on a disposable face mask [9].
In addition, it was demonstrated that different noble metals have an impact on different
properties of TiO2 based MOX sensors [10]. A recent review [11] mentioned that surface
functionalization with different noble metal nanoparticles (NPs) improves different pa-
rameters, such as selectivity and sensitivity, as well as lowering the operation temperature
and increasing long-term stability. Another recent study based on the structure-doping
method [12], i.e., the use of Ag to dope an intrinsic graphdiyne with the purpose to de-
tect SF6 decomposition gas (HF, H2S, SO2, SOF2, SO2F2), showed that the energy gap of
the system was significantly decreased and the electrical conductivity was significantly
improved after Ag doping. While mainly Ag and Pt seem to be used as catalysts for H2

detection, there are also different studies that prove that there is no limit to the use of these
metals for doping or functionalization with the purpose of enhancing different properties.
For instance, Bi et al. [13] conducted a study on α-Fe2O3 functionalized with Ag-Pt. It
showed a rapid response for triethylamine vapor sensing. Thus, a lot of practical trends
can be explored. One of them is enoses. Enoses, usually made from an array of sensors [14],
are intended to be used as odor detectors. Some researchers use noble-metal-sensitized
SnO2/RGO as enoses for H2, H2S and NO2 [15], while others develop gas recognition mod-
els for the artificial olfactory system with gas sensor arrays [16]. In some reviews [17,18], the
intention to use enoses is similar to the aim in this paper: they want to obtain a new method
for non-invasive disease prediction based on different biomarkers. In some cases, even if
good results are recorded, the sensor operation depends on temperature and therefore has
to work at a higher operating temperature [19]. H2, mainly because it is easily detected by
MOX sensors, is a common target in this type of application and is being researched in the
industry [10,20–27]. Furthermore, it is associated with different types of gastric diseases
mentioned in [4] and described in more detail in a previous work [28]. Recently, it has also
been associated with the possible up regulation of neurotransmitters involved in appetite
stimulation, leading to hunger suppression and weight loss [29].

In this work, we present a new addition to hybrid gas sensors, which were reported in
previous studies [4,10,30], to increase their response to H2. A hybrid gas sensor consists
of a MOX gas sensor coated with an ultrathin (~20–30 nm) polymer thin film on top
of the sensor. This enables measurements in high humidity environments, which was
always a problem related with conventional MOX gas sensors, as well as tuning of the
sensor selectivity and performance [31,32]. High humidity levels are also encountered in
exhaled breath. Hybrid sensors can circumvent this due to their hydrophobic character and
enable the detection of biomarkers [6]. The polymer thin film is deposited via solvent-free
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initiated chemical vapor deposition (iCVD) [33]. This allows the conformal coating of
complex MOX sensor structures with a polymer film, which can be tailored by deposition
parameters and precursors. The basic reaction mechanism is free-radical polymerization.
The transport of gas molecules through the polymer film is accompanied by the molecular
characteristics and free volume in the layer. These results motivated us to further study the
compatibility of hybrid sensors for biomarker detection in exhaled human breath to further
tune selectivity. We investigate in this study the influence and transport of gas molecules
through an ultra-thin polymer film containing silsesquioxane cage-like structures, which
should provide a different free volume compared to the cyclotetrasiloxane rings in our
previous study, using poly(1,3,5,7-tetramethyl-tetravinylcyclotetrasiloxane) (PV4D4) as the
top layer. The silsesquioxane structures are obtained by the heat treatment of thin films of
PV4D4 deposited by iCVD in oxygen, similar to the route reported by Trujillo et al. for the
formation of low-k dielectrics [34].
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