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Abstract  
The calculation of a resistive sensor is considered as the load of an unstable communication line using a neural 
network. In the corresponding approximation or regression problem, the feedforward neural network is trained using 
training data and additional control data. Such data are calculated from a mathematical model of the communication 
line in the form of a resistive two-port with some type of change step (regular or irregular) of the load and line 
parameters. The training data is traditionally divided into training, validation and test sets. It was established that in 
the training epochs, the neural network reveals this internal pattern (inherent in the used step of change) in these 
three sets. Therefore, when training the network and then applying the additional control data, small errors are 
obtained. But for the additional control data with a different type of step, the errors appear. The use of mixed 
training data by combining data with diverse type of change step eliminates said internal regularity and the neural 
network shows the capability to generalization and small errors by presented numerical experiments. To quantify the 
quality of the trained network, a special index is introduced as a repeatability of the specified relative error in 
percent for multiple retraining. 

 
Keywords Resistive sensor, Wire line, Two-port, Projective transformations, Neural network, Relative error. 

 
1 Introduction 
 
In approximation or regression problems, a feedforward neural network is trained using input and target data [1, 2]. 
These data for a technical device with a sensor of physical quantities (considering the environment influence) are 
calculated either according to the mathematical model of this sensor or are generated through experimental 
measurements [3-9]. Let us pay attention to the choice of a step or interval for changing parameters of these data. 
Usually or by default, the values  of the changing parameters are set with some constant or regular step [10-14].  

According to the well-known practice of solving the overfitting problem, data are usually split into training - 
70%, validation - 15%, and test - 15% sets. As a result of training, using MATLAB Fit Data package, high 
regression or correlation coefficient and small mean squared error values for these data sets are achieved. But, these 
papers do not provide results for other (extended or control) data sets to ensure that there is no overfitting. 

The similar data generation with a regular step was used to calculate a resistive sensor as the load of an unstable 
communication wire line [15]. Subsequent simulations for an extended or additional control data were to confirm 
the calculation accuracy of this trained network. But, as it turned out, there were large variations in relative error 
values   for individual data.  

The researches have shown that it is all about the training and control data generation. On the one hand, a given 
step of changing (not necessarily the regular) parameters is present in the training, validation and test sets. When 
training, the neural network reveals this internal pattern in these three sets. Therefore, the small mean squared errors 
are obtained. 

On the other hand, if the control data uses the same type of change step, small relative error values for the entire 
data set are also obtained. But, if the control data with a different type of step, then relative errors immediately 
appear. Therefore, the quality of such trained network becomes questionable. 

In the present paper, the training data generation is carried out by combining data with both regular and irregular 
steps (moreover, of different types) of changing parameters. Therefore, in the divided three sets, this internal pattern 
is excluded and the network shows the capability to generalization by presented numerical experiments. To quantify 
the quality of the trained network, a special index is introduced as a repeatability of the specified relative error in 
percent for multiple retraining. This index allows to find a compromise between the size of training data, the 
accuracy obtained, the number of neurons and provide purposeful and fast network training. 
 
2 Prerequisites for the use of a neural network to calculate the load of an unstable wire line 
 
Let us consider a two‒port circuit as the model of unstable wire supply line for a power load or communication line 
for a resistive sensor.  Parameters of this two‒port are determined by known measurement methods [16, 17]. In turn, 
the load or sensor values are calculated from the measured current at the line input and the input‒output 
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relationships of the two‒port. But, the need to redefine line parameters takes time and complicates this calculation 
method.   

On the other hand, these known input‒output relationships are considered as projective transformations 
(mapping or conformity of points, lines, etc.) in the sense of projective geometry [18, 19]. The projective 
transformations preserve an invariant as the cross–ratio (double proportion) of four samples (values) of variable 
resistance and the corresponding values   of the input currents. The three samples are the specified load base 
(reference) values, and the fourth sample is the running load value. This cross–ratio is independent of the line 
parameters being changed. Therefore, the running load value can be calculated from the measured samples of the 
input current and the load base values. It is important to note that the communication line parameters are not 
explicitly calculated. The structure of the cross–ratio expression attracts attention; errors in the measuring currents 
are mutually reduced [20, 21].   

In turn, the load base values may not be known exactly, which limits the direct calculation of the running or 
measuring load from the input current. The use of a neural network removes this restriction [15]. As mentioned 
above, the task solved is an example of approximation or regression problems [1, 2]. To generate data, a set of the 
possible load base values, the measuring load and a variable resistance of the two‒port itself was used. The 
corresponding calculated set of input currents forms the input vector data of four components, and the measuring 
load values are the target data. 

 
3 Input-output invariant of a two-port 

 
 Let us give the necessary information from the interpretation of circuit equations as a projective transformation to 
calculate the load by measured input currents. To do this, we consider a two‒port in Fig. 1.  The equation I0(RL) has 
the known fractionally linear view 
 

I0 =V0*(RL + r1 + r10)/ (RL*r0 + RL*r10 + r0*r1 + r0*r10 + r1*r10)                            (1)                                                                        
 
Here and further the used values are represented in the MATLAB format. The corresponding replacement of the values 
designations will be understandable without explanations.  

    We consider the expression (1) as a projective transformation in the sense of projective geometry. Therefore, 
for this projective transformation, an input-output invariant is performed in the form of cross ratio for four load 
values OC

L
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L RRRR ,,,    and of the corresponding input currents OCREFSC IIII 0000 ,,,  
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The three values OC

L
REF
L

SC
L RRR ,, are the given base values. Let it be some minimum 𝑅௅ௌ஼ , maximum 𝑅௅ை஼  , 

and middle 𝑅௅ோாி  value. In turn, the values LR and 0I are the running ones.    The invariant expression (2) do not 

explicitly contains two–port’s parameters. Therefore, it is possible to calculate the load resistor LR from the 

measured input currents OCREFSC IIII 0000 ,,,  of this two–port with variable or unstable parameters. But it follows, 

that possible deviations of both the declared values   of the base values  OC
L

REF
L

SC
L RRR ,,  and measurement errors 

in the input currents lead to errors in the calculation of the load. 
 

 

Fig.1 Two-port with a load resistor RL 
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4 Preparing the training data  
 
Consider the specific example of two‒port in Fig. 1. Let us take the following dimensionless parameter values 
V0=12, r0=4, r1=1, r10=9. In turn, let the load value RL change over a sufficiently large range 5…17. Then, the plot 
I0(RL) has the view in Fig. 2. Such a monotonous dependency in approximation or regression problems does not 
require a large amount of samples. This amount will be then determined. 
 

 

Fig. 2 Plot I0(RL) as a monotone function 
 

    As shown above, the training data are given by a set of possible values of both the base resistances
OC
L

REF
L

SC
L RRR ,, , the load LR , and a variable parameter of the two–port itself. Let such a variable parameter be 

the transverse resistance r10. The total amount of samples is formed due to the mutual search of the base resistances 
with the load and resistance r10. The corresponding calculated set of input currents OCREFSC IIII 0000 ,,, forms the 

input vector of four components, and the load values LR are the target vector. 
 
 

4.1 Case of the regular step of changing parameters  
 

Let the resistance value R10 vary over a sufficiently large range of 7... 11 in increments or regular step of 0.666, 
giving 7 samples, according to Table 1. The range of changes for the base resistance rOC, rSC, rREF is adopted 
narrower, but also with 7 samples. In turn, the measurement load or sensor resistance rL itself changes in a wide 
range 5... 17. 

     It is now necessary to calculate the input vector or input current vector (as column vector) with the following 
base components I0OC, I0REF, I0SC and measuring component I0MES 

 
 

I0_49= [I0OC; I0REF; I0SC; I0MES].                                               (3) 
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Table 1 Training samples with the regular step of changes 

 
Amount  
of samples  

Range and increment of 
changes  

Input vector Target vector 

7*7=49 R10=7:0.666:11 
 rL=5:2:17 
 rOC=22:0.333:24 

 rSC=2.2:10.0333:2.4 
 rREF=17.2:0.266:18.8 

I0_49 t_49 

5*5=25  R10=7:1:11  
 rL=5:3:17 
 rOC=22:0.5:24 
  rSC=2.2:0.05:2.4 
  rREF=17.2:0.4:18.8 

I0_25 t_25 

6*6=36 R10=7:0.8:11  
rL=5:2.4:17 
rOC=22:0.4:24 
rSC=2.2:0.04:2.4 
rREF=17.2:0.32:18.8 

I0_36 t_36 

 

    Next, we calculate all the samples for the component I0OC. To do this, in the expression (1), we substitute by 
turn all the samples rOC for the next sample R10. For these calculations, it is convenient to organize a Script file 
“train_49”. The following code or statement uses the for loop with the values rOC, the nested for loop with R10, and 
the user-defined function (1) 

 
% train_49                            (4) 

% input current OC samples 
I0OC=zeros(0); 

for RL=rOC 
for r10=R10 

I0oc =in_curr_0(RL,r10); I0OC=[I0OC I0oc];  
end 
end 

% input current REF samples 
. . . 

% input current SC samples 
. . .  

% input current MES samples and target 
I0MES=zeros(0); t=zeros(0); 

for RL=rL 
for r10=R10 

I0mes =in_curr_0(RL,r10); I0MES=[I0MES I0mes]; 
t=[t RL]; 

end 
end 

I0_49= [I0OC;I0REF;I0SC;I0MES]; t_49 =t;                                            
 

function I0 =in_curr_0(RL,r10) 
V0=12;r0=4;r1=1; 

det=r0.*RL + r10.*RL + r0*r1 + (r0+r1).*r10; 
I0=(V0.*RL + V0*r1 + V0.*r10)./det; 

end 
 
Thus, the mutual search of the rOC, R10 values yields 49 combinations of I0OC current that are output from 

these loops as the vector. Similarly, we get 49 combinations for the rest components of the current and the target 
vector. Finally, the input current vector I0_49 according to (3) comprises four rows of 49 samples. The target vector 
t_49 includes one row of 49 samples too.  

Similarly, the training data are obtained for the initial 5 and 6 samples, according to the Table 1. 
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4.2 Case of the irregular step of changing parameters  

Let us introduce a clock variable with the constant step of changing, as x=0:6. Next, we use, for example, 
exponential expressions, so that the values  are in the change area for the regular step according to the Table 2. 
 
Table 2 Training samples with the irregular step of changes 

 
Clock 

variable 
Exponential expressions 
 

Input vector Target vector 

x=0:6 R10=0.19*(x.^1.7) +7 
rL=0.68*(x.^1.6) +5 
rOC=0.16*x.^1.4+22 
rSC=0.01947*x.^1.3+2.2 
rREF=0.085*x.^1.25+17.2 

I0_ir_49 t_ir_49 

x=0:4 R10=0.3789*(x.^1.7) +7 
rL=1.3058*(x.^1.6) +5 
rOC=0.2872*x.^1.4+22 
rSC=0.033*x.^1.3+2.2 
rREF=0.2828*x.^1.25+17.2 

I0_ir_25 t_ir_25 

x=0:5 R10=0.2593*(x.^1.7) +7 
rL=0.9138*(x.^1.6) +5 
rOC=0.2101*x.^1.4+22 
rSC=0.0247*x.^1.3+2.2 
rREF=0.107*x.^1.25+17.2 

I0_ir_36 
 
 

t_ir_36 

 
 

For the above specific example of two‒port in Fig.1, the plot rL(x) in Fig. 3 clearly shows the irregular step of 
rL value change. For the comparison, the dash line straight y=2*x+5 demonstrates the regular step.  

       In turn, the plot I0ir_49(x) in Fig. 4  shows the obtained rough linearization of the two-port nonlinear 
characteristic. As will be shown below, it is not about a linearization, the linearization itself has no effect. This 
approach thus differs from the polynomial regression [23]. 

    Similar to the expressions (3), (4), we calculate training data I0_ir_49, t_ir_49, I0_ir_25, t_ir_25, and 
I0_ir_36, t_ir_36 correspondently. 

 

 
Fig. 3 Irregular step of the RL value change; 

the dash line straight demonstrates the regular step 
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Fig. 4 Rough linearization of the two-port characteristic 

 
 

4.3 Case of the inverse step of changing parameters  
 

We organize another type of step change according to Table 3. 
 

Table 3 Training samples with the inverse step of changes 
 

Clock 
value 

Exponential expressions 
 

Input 
vector 

Target vector 

x=0:6 R10=1.141*(x.^0.7) +7 
rL=4.095*(x.^0.6) +5 
rOC=0.976*x.^0.4+22 
rSC=0.1168*x.^0.3+2.2 
rREF=1.0223*x.^0.25+17.2 

I0_inv_49 t_inv_49 

x=0:4 R10=1.5157*(x.^0.7) +7 
rL=5.2233*(x.^0.6) +5 
rOC=1.1487*x.^0.4+22 
rSC=0.132*x.^0.3+2.2 
rREF=1.1314*x.^0.25+17.2 

I0_inv_25 t_inv_25 

x=0:5 R10=1.2965*(x.^0.7) +7 
rL=4.5688*(x.^0.6) +5 
rOC=1.0506*x.^0.4+22 
rSC=0.1234*x.^0.3+2.2 
rREF=1.07*x.^0.25+17.2 

I0_inv_36 t_inv_36 

 
The plot rL(x) in Fig. 5 clearly shows the inverse step of rL value change. 
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Fig. 5 Invers step of the RL value change; 
the dash line straight demonstrates the regular step 

 
In turn, the plot I0_inv_49(x) in Fig. 6 shows the obtained of the two‒port nonlinear characteristic. This 

characteristic is more nonlinear than the original characteristic with regular step. 
 

 

Fig. 6 Invers characteristic of the two-port 

 
Similar to the expressions (3), (4), we calculate all the training data 
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5 Control data  
 
To check the neural network during or after training, we will prepare several control data, which values  should be 
within the range of changing parameters for training, but not coincide with them. This is control data of different 
sizes to determine the required size and be sure of the accuracy of the trained network or its capability to 
generalization. We also use the regular and irregular step of changing parameters. 

 
5.1 Control data with the regular step of changing parameters  
 
Initial parameters for the calculation of control data are presented in Table 4. 
 
Table 4 Control samples with the regular step of changes 

 
Amount  
of samples  

Range and increment of 
changes  

Input vector 
 

Target vector 
  

27*27=729 R10=7:0.1538:11  
 rL=5:0.461:17 
 rOC=22:0.0769:24 

    rSC=2.2:0.00769:2.4 
 rREF=17.2:0.0307:18  

I0ts_729 tts_729 

121*121=14641  R10=7:0.0333:11 
 rL=5:0.1:17 
 rOC=22:0.01666:24 

 rSC=2.2:0.001666:2.4 
 rREF=17.2:0.00666:18  

I0ts_14641 tts_14641 

4*4=16 - I0ts_16 tts_16 

9*9=81 - I0ts_81 tts_81 

 

Similar to the expressions (3), (4), we calculate all the control data 
 

 

5.2 Control data with the irregular step of changing parameters  
 

Initial parameters for the calculation of control data are presented in Table 5. 
 

Table 5 Control samples with the irregular step of changes 
 

Clock 
value 

Exponential expressions 
 

Input vector 
  

Target vector 
  

x=0:26 R10=0.0157*(x.^1.7) +7 
rL=0.0653*(x.^1.6) +5 
rOC=0.0209*x.^1.4+22 
rSC=0.0029*x.^1.3+2.2 
rREF=0.0136*x.^1.25+17.2 

I0ts_ir_729 tts_ir_729 

x=0:120 R10=0.001168*(x.^1.7) +7 
rL=0.005655*(x.^1.6) +5 
rOC=0.00245*x^1.4+22 
rSC=0.000396*x.^1.3+2.2 
rREF=0.002014*x.^1.25+17.2 

I0ts_ir_14641 tts_ir_14641 

 
Similar to the expressions (3), (4), we calculate all the control data. 
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6 Neural network training and evaluation for 49 samples 
 

The Fit Data with a Shallow Neural Network section provides a Script example [2]. So, we use this example as 
“Script_49”. When training a network, the initial weights are randomly selected, so in order to get more correct 
results, we conduct a series of 10 experiments for the training data.  
 
6.1 Training data with only one type 
 
Let us consider the “Script _49” with the regular train data I0_49, t_49 

 
% Solve an Input-Output Fitting                                               (5)                  

x = I0_49; t = t_49; %input and target data 
% Training Function and Create a Fitting Network 

trainFcn = 'trainlm'; hiddenLayerSize = 8; 
net = fitnet (hiddenLayerSize, trainFcn); 

% Division of Data for Training, Validation, Testing 
net. divideParam.trainRatio = 70/100; net. divideParam.valRatio = 15/100; 

net. divideParam.testRatio = 15/100; net. trainParam.epochs = 500; 
% Train and test the Network 

[net, tr] = train (net, x, t); y = net(x); e = gsubtract (t, y); 
performance = perform (net, t, y), figure, plotperform(tr) 

% Test the Network by the two control data sets 
Rts_729=sim (net, I0ts_729); er_726=100*(tts_729 -Rts_729). /tts_729; 

max_729=max(er_729), min_729=min(er_729) 
 

Rts_ir_729=sim(net,I0ts_ir_729); er_ir_729=100*(tts_ir_729-
Rts_ir_729)./tts_ir_729; 

max_ir_729=max(er_ir_729); min_ir_729=min(er_ir_729); 
   
Apparently, only extreme (maximum and minimum) relative error values er_729 and er_ir_729   are output for 

the control regular and irregular data respectively due to the large number of samples.  
    We put 9 neurons for the hidden layer. This number corresponds to the well-known formula 2n+1, where n=4 

defines the input vector dimension [24]. After ten retraining, we give the results of the I0ts_729 in the   
. 
 

Table 6 Regular train data I0_49. Number of experiments and relative errors  
values for the regular control data I0ts_729 
 

No. of 
exper. 

1 2 3 4 5 6 7 8 9 10 

errors, 
% 

0.410 0.661 0.082 1.213 0.052 0.526 0.278 0.222 0.088 0.368 

 
As you can see from this table, there are 7 errors up to 0.5%, and the number of errors up to 1% is 9. Therefore, 

we may introduce a repeatability of the specified relative error or error repeatability, as special index in percent that 
show a tendency to change the training quality of such data according to Table 7.  

 
Table 7 Regular train data I0_49. The error repeatability of 10 experiments for the 
 regular control data I0ts_729 

 
specified errors, %  0.5 1 2 5 10 

error repeatability, %   70 90 100 100 100 

 
Next, we do 10 experiments for 8 and 10 neurons. For all these experiments, we find errors for the control 

irregular data I0ts_ir_729 also. All the results are given in the Table 8.  
As you can see, for regular control data, the repeatability of small errors (about 1-2%) is very high and 

corresponds to 80-100%. In turn, only large errors (more or equal to10%) appear for the irregular control data. Small 
errors, of the order of 2%, rarely occur, which corresponds to the repeatability value of 20%. 
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Table 8. Regular train data I0_49. The error repeatability for the regular and irregular control data 
 

Number of 
neurons 

Control date regular I0ts_729 irregular I0ts_ir_729  
  

specified errors, % 0.5   1     2       5      10 0.5   1     2      5    10 
8 error repeatability, %   70    80    80    90    100  0     0    10    30    80 
9 70    90   100   100   100  0     0    20    70   100 

     10  50    80     80   100   100  0     0    20    70   100 

 
    To confirm such a conclusion, we will change the training data to irregular I0_ir_49, t_ir_49 in the training 

code (5). All the results are given in the Table 9.  
 

Table 9 Irregular train data I0_ir_49. The error repeatability for the regular and irregular control data   
 

Number of 
neurons 

Control date regular I0ts_729 irregular I0ts_ir_729  
  

specified errors, % 0.5   1     2       5    10 0.5   1     2      5    10 
8 error repeatability, %   10    20    60    90    90 70    90    90   100   100 
9 10    30    50    70    90 60    70    80    90   100 
10 10    20    30    80    90 50    70    80    90   100 

 
 

 As you can see, already for the irregular control data, the repeatability of small errors (about 1-2%) is very high 
and corresponds to 70-90%. At the same time, for the regular control data, small errors (of 1-2%) appear less often, 
which corresponds to the repeatability value of 20-60%. 

      Thus, it is confirmed that if control date of a different type than the training data, then larger errors appear to 
a greater extent. That is, the network does not show the capability to generalization. 

    To further confirm such a result, experiments were conducted for regular training data on 121 and 256 
samples. The result is the same. Also, experiments for regular control data of different sizes as I0ts_16, I0ts_81, and 
I0ts_14641 showed errors commensurable with the I0ts_729 size. 

 
 

6.2 Improved the calculation accuracy and capability to generalization 
 
An obvious way to generate training data is to combine different types of training data. 

 
6.2.1 Combining regular and inverse training data 
 
Let us use the combine input vector x= [I0_49, I0_inv_49] and target vector t= [t_49, t_inv_49] in the training code 
(5). All the results are given in the Table 10. As can be seen, commensurable errors are already occurring for the two 
types of control data compared to Table 8. 
 
Table 10 Combining regular and inverse train data I0_49, I0_inv_49. The error repeatability for the 
regular and irregular control data  
 

Number of 
neurons 

Control date regular I0ts_729 irregular I0ts_ir_729  
  

specified errors, % 0.5   1          2       5      10  0.5    1        2      5      10 
8 error repeatability, %   90    100    100    100   100  90   100   100   100   100 
9 100   100   100   100    100  100   100   100   100   100 
10 100   100    100   100   100  100   100   100   100   100 

 
 
   To further confirm such a result, experiments were conducted for larger size of control data I0ts_ir_14641. For 

smaller control data, the training data as I0_ir_49, was used. The results correspond to the Table 10. Thus, the 
network shows the capability to generalization due to these combined training data.  Especially note that the training 
data do not contain the irregular data, but high repeatability was obtained for the irregular control data. 
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6.2.2 Combining irregular and inverse training data 
 
Let us combine the input vector x = [I0_ir_49, I0_inv_49] and target vector t= [t_ir_49, t_inv_49]. All the obtained 
results correspond to the above case. Thus, entirely irregular training data produce good results for regular control 
data. The network also confirms the capability to generalization by these combine training data. 
 
6.2.3 Combining regular, irregular, and inverse training data 
 
We use the combine the input vector x = [I0_49, I0_ir_49, I0_inv_49] and target vector t= [t_49, t_ir_49, t_inv_49]. 
All the obtained results correspond to the above cases. 

    All these results showed that the accuracy of the sensor calculation (of 1 or 2%) is guaranteed for the 
combined training data with 49 samples. The type and size of the control data is not critical to assessing the quality 
of the trained network. 
 
7 Neural network training and evaluation for 25 samples 
 
In the considered case with 49 samples, according to Table 8, the network is obtained, as it were, with a high quality 
of training for regular control data. Now you need to consider the extreme case with fewer samples so that small 
errors rarely occur for the regular control data, which corresponds to the small error repeatability value also. 
 
7.1 Training data with only one type 
 
Such a case corresponds to 25 samples with regular training data I0_25, t_25. Using code (5), make Table 11, 
similar to Table 8. 
 
Table 11 Regular train data I0_25. The commensurable error repeatability for the 
regular and irregular control data 

 
Number of 
neurons 

Control date regular I0ts_729 irregular I0ts_ir_729  
  

specified errors, %     0.5   1     2       5      10 0.5   1     2      5    10 
8 error repeatability, %        0    30    50    80    80 0     0    10    40    70 
9      0    20    40    40    60 0     0    20    30    50 
10      0     20    20    60    60 0    10    10    30    60 

 
As you can see, small errors, of 1‒2%, rarely occur, which corresponds to the repeatability value of 20‒50% for 

regular control data. Also, the experiments for regular control data of different sizes as I0ts_16, I0ts_81, and 
I0ts_14641 showed the repeatability commensurable with the I0ts_729 size.  

  
7.2 Improved the calculation accuracy and capability to generalization 

 
Now let us try to increase the accuracy and capability to generalization by combining different types of training 
data. 
 
7.2.1 Combining regular and inverse training data 

 
Let us use the combine input vector x= [I0_25, I0_inv_25] and target vector t= [t_25, t_inv_25] in the training code 
(5). All the results are given in the Table 12.  As can be seen, it is possible to significantly improve the quality of 
training. To further confirm such a result, experiments were conducted for larger size of control data I0ts_ir_14641. 
For smaller control data, the training data I0_ir_49 was used. The results correspond to the Table 12.  

 
Table 12 Combining regular and inverse train data I0_25, I0_inv_25. The error repeatability for the 
regular and irregular control data 
  

Number of  
neurons 

Control date regular I0ts_729 irregular I0ts_ir_729  
  

specified errors, % 0.5   1       2       5      10 0.5    1       2     5      10 
8 error repeatability, %   10    60    90   100   100 10    60    90   100   100 
9 40    40    50   100   100 40    40    40   100   100 
10 30    70    80    90    90 40    60    80    90    90 
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7.2.2 Combining irregular and inverse training data 
 
Let us combine the input vector x = [I0_ir_25, I0_inv_25] and target vector t= [t_ir_25, t_inv_25]. All the obtained 
results correspond to the above case.  
 
7.2.3 Combining regular, irregular, and inverse training data 
 
We use the combine the input vector x = [I0_25, I0_ir_25, I0_inv_25] and target vector t= [t_25, t_ir_25, t_inv_25]. 
All the obtained results are given in the Table 13. 
 
Table 13 Combining regular, irregular, and inverse train data I0_25, I0_ir_25, I0_inv_25. The error repeatability for 
the regular and irregular control date 
 

Number of 
neurons 

Control date regular I0ts_729 irregular I0ts_ir_729  
  

specified errors, % 0.5    1       2       5     10  0.5    1      2      5      10 
8 error repeatability, %   70    90    90   100   100  70    90    90   100   100 
9 90    90    90   100   100  90    90    90    90    100 
10 70    90   100   100   100  90    90   100   100   100 

     
As can be seen, it is possible to significantly improve the quality of training. To further confirm such a result, 
experiments were conducted for control data I0ts_ir_14641 and as I0_ir_49.  

And so, 25 samples are the minimum number of samples. In this case, it is possible to obtain the accuracy of the 
sensor calculation (of 2 or 5%) due to a multiple retraining. In turn, experiments with 36 samples give a noticeable 
increase in the quality of training. It is also possible to obtain the accuracy of the sensor calculation (of 1 or 2%) 
through multiple retraining. Therefore, you can find a compromise between the number of samples (from 25 to 49) 
and the time spent on training. 

 
 8 Conclusions 

 
The traditional calculation of the load resistance of a two-port circuits with variable parameters leads to redefine 
these parameters in operating regime. All this leads to the complexity of the possible hardware implementation of 
the calculation unit and increases the calculation time. 

 The presented numerical experiments confirm the cumulative effect of applying a feedforward neural network 
with the two–port invariant properties in the load calculation or measurement.  

  Such an index as the repeatability of specified error, provides a quantitative assessment of the quality of 
training.   

The training data with one type of parameter change step does not provide quality of training. Control data with 
the same change step type does not detect errors. The training data with different types of parameter step provides 
the required quality of the trained network. 

The obtained results provide the basis for the study of different generation algorithms for the irregular step and 
the application for other regression tasks. 
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