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Abstract: The article focuses on the optimization of the extraction process of biologically active com-
pounds (BAC) from grape marc—a by-product of the wine industry. The influence of temperature,
specifically 30 ◦C, 45 ◦C and 65 ◦C, and ethanol concentration in solutions, specifically 0–96% (v/v)
on the extraction yield of polyphenols, flavonoids, tannins and anthocyanins, were investigated.
The composition of individual polyphenols, anthocyanins and organic acids, antioxidant activity
(DPPH and ABTS) and CIELab chromatic characteristics of the grape marc extracts (GME), were
characterized. The microbiostatic and microbicidal effects in direct contact of GME with pathogenic
microorganisms, Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, were
determined in vitro. The influence of extraction parameters on the total polyphenol content (TPC),
total flavonoid content (TFC), tannin content (TC), total anthocyanin content (TAC) and their interde-
pendencies were studied using information analysis. A mathematical model was developed on cubic
spline functions. The analysis of individual compounds showed the presence of a wide range of
flavonoids (procyanidin B2, procyanidin B1, hyperoside and quercetin), flavones (catechin), hydrox-
ybenzoic acid derivatives (gallic, protocatechuic, p-hydroxybenzoic acids, m-hydroxybenzoic acid,
syringic acid), hydroxycinic acid derivatives and ferulic acid methyl ester. The malvidol-3-glucoside
was the main anthocyanin identified in the extract. A high amount of tartaric acid was also found.
GME showed significant antimicrobial activity against Gram-positive bacteria and lower activity
against Gram-negative bacteria.

Keywords: grape marc; extraction parameters; biologically active compounds; mathematical models;
antimicrobial activity; pathogenic microorganisms

1. Introduction

Alcoholic and non-alcoholic beverage production generates waste and by-products
that can be recovered. This would not only minimize their disposal costs and environmental
hazards, but also add value to the development of new products. Traditional methods
of using waste as fertilizer or animal feed use only a small part of the waste and are
often not very effective [1]. Efforts must also be made to isolate and structurally elucidate
new bioactive compounds. This will lead to achievements in the recovery of bioactive
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molecules, important for the development of innovative products, but it will also contribute
to reducing environmental pollution [2]. A significant amount of residues is generated
by the processing of grapes, among them, grape marc [3]. These residues are generally
undervalued and used in animal feed (with low nutritional value), turned into fertilizer
and even dumped in the environment, generating other problems, i.e., increased soil
acidity, phytotoxicity, methane gas production, etc. [4]. Grape marc can become a product
with potential economic profitability because it is a source of BAC (phenolic compounds,
fatty acids, pectins, etc.) that can be used in the manufacture of food, cosmetics, dyes,
supplements [5–8].

Numerous studies have shown the beneficial effects of polyphenols in grapes or wine
on human health [9,10]. The general compositions of some grape marc have also been
described [11,12]. Grape marc contains components that inhibit the proliferation of Caco-2
and HT-29 cancer cells by triggering apoptosis, has strong free radical scavengers and
may provide some level of protection against certain cancers [13]. The profiles of pheno-
lic compounds, recovered from waste from various wineries, were dominated by gallic
acid, catechin and epicatechin. In addition, hydroxytyrosol, tyrosol, cyanidin glycosides
and various phenolic acids, such as caffeic, procathechinic, syringic, vanillic, o-coumaric,
p-coumaric acid, have also been identified [14]. A significant content of polyphenols
(199.31 ± 7.21 mg gallic acid equivalents (GAE)/g), high antioxidant activity (cupric reduc-
ing antioxidant capacity test (CUPRAC)- 1036.98 mg trolox equivalents (TE)/g), enzyme
inhibition (α-tyrosinase:151.30 ± 1.20 mg kojic acid equivalents (KAE)/g), is attested. The
anti-inflammatory activity, as well as the antimicrobial activity of grape skin decoction,
is higher than that reported for wine [15,16]. The extracts remarkably inhibit glucosyl-
transferases B and C (70–85% inhibition). Glycolytic decrease in pH can be attributed to
partial inhibition of F-type adenosine triphosphate (F-ATP) activity (inhibition 30–65% at
125 µg/mL).

The biological activity of fermented marc is either as effective or significantly better
than grape extracts [17]. Many phenolic compounds show significant antibacterial activ-
ity [18]. This is of particular interest for the development of natural alternatives to synthetic
food preservatives and cosmetic applications [19,20]. Phenolic grape extracts, especially
from different types of grape marc, are very effective against the specific virulence traits of
Streptococcus mutans, despite major differences in their phenolic content. The mechanisms
of antibacterial action of phenolic compounds are not yet fully deciphered, but it is known
that these compounds involve many sites of action at the cellular level [21]. Several authors
have explained this activity by the change of the permeability of cell membranes, the mod-
ification of the various intracellular functions induced by hydrogen binding of phenolic
compounds to enzymes or by the changing of the rigidity of the cell wall, which leads to
loss of integrity [22,23]. Polyphenols can induce irreversible damage to the cytoplasmic
membrane, coagulation of cell contents and inhibition of intracellular enzymes. Tannins
induce damage to the cell membrane, while phenolic acids can disrupt membrane integrity,
causing leakage of essential intracellular constituents [24,25]. Flavonoids can bind to the
cell walls of bacteria, promoting the formation of complexes, inhibit energy metabolism,
DNA and RNA synthesis, intracellular changes in pH and interference with ATP [26,27].

Given the chemical composition of the grapes—and grape marc is obviously influenced
by environmental factors and grape varieties [28–31]—extraction techniques should be
optimized according to the composition of the pomace and directions for subsequent use
of the extracts.

Several techniques are used to recover polyphenols from wine by-products, such as
conventional solvent extraction, also called solid–liquid extraction (SLE), which is the most
applied technique from an industrial point of view [32]. Several solvents have been studied
for the extraction of polyphenols, but the preferred systems for food, pharmaceutical or
cosmetic applications are those based on water and ethanol [33]. New unconventional
techniques have emerged that can reduce extraction time, process temperature and sol-
vent consumption, thus contributing to higher extraction efficiency and lower energy



Molecules 2022, 27, 1610 3 of 18

consumption. Some of the most relevant technologies are: ultrasonic-assisted extraction
(UAE) [6,34], microwave-assisted extraction (MAE) [35,36], supercritical fluid extraction
(SFE) [37], liquid pressure extraction (PLE) [38], ohmic heating (OH) [39], pulsed electric
fields (PEF) [40,41] and enzyme-assisted extraction (EAE) [42]. Some enzymes, such as
cellulases, hemicellulases, pectinases or amylases, can break down or weaken cell walls,
releasing cytoplasmic contents (e.g., phenolic compounds) into the extraction solvent and
thus improving extraction recovery. EAE can also be combined with other extraction
techniques, such as EAU, MAE, PLE or SFE [43].

The optimization of the extraction parameters is easy to obtain in reproducible con-
ditions, but the non-uniformity of by-products requires the presence of flexible solutions,
easily adaptable to the composition of the extraction matrix. Response surface method-
ology (RSM) and artificial neural network (ANN) were used to model and optimize the
extraction of polyphenolic compounds [44,45]. Statistical indicators have demonstrated the
superiority of ANN. The comparison of different models of prediction of total polyphenols
was performed by three mathematical equations: Spiro, Peleg and logarithmic, and two
data extraction techniques: multivariate adaptive regression splines (MARS) and artificial
neural network (ANN). The obtained results show that the data-mining techniques (MARS
and ANNs) allow the creation of fast models and simple application, with a very good
acceptability (coefficients of determination over 0.99) [45].

The aim of this article was to optimize the process of extracting bioactive compounds
from red grape pomace according to temperature and solvent concentration, to model
the interdependencies between extraction parameters by chemometric approach and to
characterize the composition of extracts, antioxidant capacity and antimicrobial activity for
subsequent use of these extracts in the food industry.

To optimize the extraction process, the polynomial spline functions were applied,
which allows a division of the entire space of each independent variable into different
sub-regions. Subsequently, truncated spline functions on two sides were defined as basic
functions for describing the relationships between dependent and prediction variables in
each distinct interval of the prediction variable. This model allows the adaptation of the
extraction process to the fluctuating conditions of the composition of the grape marc solid
fraction. For the solid–liquid extraction, the classic model was applied, applicable in the
conditions of small grape processing enterprises, without additional expenses in terms of
sophisticated equipment.

2. Results
2.1. The Influence of Temperature on the Extraction Yield of Bioactive Compounds

The influence of temperature, i.e., 30, 45 and 65 ◦C on the extraction yield of the
TPC, TFC, TC and TAC in GME was investigated. The ethanolic solutions in the range of
concentrations 0–96% (v/v) were used as solvents (Table 1).

The experimental data in Table 1 show that in grape marc ethanolic extracts, as the
extraction temperature increases from 30 ◦C to 65 ◦C, the content of BAC increases with the
variation of the hydroalcoholic concentration up to 60% (v/v) and then decreases to 96%
(v/v). At 65 ◦C, the maximum values of the BAC content were attested for hydroalcoholic
solutions of 60% (v/v). Thus, the TPC was 11.02 mg gallic acid equivalent (GAE)/g DW;
TFC—7.76 mg GAE/g DW; TC—1.37 mg tannic acid equivalent (TAE)/g DW; and TAC—
0.97 mg malvidin-3-glucoside equivalent (ME)/g DW. Minimum values of BAC content
were obtained at a temperature of 30 ◦C and a concentration of the ethanolic solution of 96%
(v/v), where the TPC was 1.37 mg GAE/g DW; TFC—0.84 mg GAE/g DW; TC—0.11 mg
TAE/g DW; and TAC—0.23 mg ME/g DW.

The variation of the temperature from 30 to 65 ◦C in hydroalcoholic solutions with
60% (v/v) increases the extraction yield of BAC as follows: the TPC—1.47 times; the
TFC—1.59 times; TC—1.63 times; and TAC—1.45 times.
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Informational analysis of the experimental data allowed the ascertainment of the
influence of temperature on extraction yield of polyphenolic compounds. It was shown
that extraction temperature had less influence on the directly measured parameters than
the interdependence between the polyphenolic compounds TAC–TPC and TFC–TPC.

The composition of individual polyphenols in GME was established. Selective ex-
traction of anthocyanins was demonstrated. Monoglycosides were better extracted than
acetylated glycosides and coumarin glycosides. Malvidol was extracted in larger quantities
than peonidol, followed by petunidol, delfinidol and cyanidol.

GME was characterized by an important antioxidant activity, which was determined
by the DPPH and ABTS tests being 15.09 mmol TE/g DW and 18.67 mmol TE/100 g DW,
respectively. The chromatic parameters of GME demonstrated the prevalence of red
pigments (9.72) and the low amount of yellow pigments (1.22), which is an important
feature because it can be used in the development of natural dyes in the food industry.

GME was shown to have a significant influence on Gram-positive bacteria (Bacillus
subtilis and Staphylococcus aureus) compared to Gram-negative bacteria (Escherichia coli and
Klebsiella pneumoniae).

The obtained results showed that the application of solid–liquid extraction methods al-
lows extracts rich in polyphenolic compounds with antioxidant capacity and antimicrobial
potential to be obtained without the application of technologies that would require expen-
sive equipment and consumables. The extraction can be carried out directly at the wineries,
after the processing of the grapes, using the alcohol obtained by distilling the pomace and
the wine yeasts used. The application of modeling based on cubic spline functions allows
the optimization of the extraction according to the available ethanol concentration.
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