D. Ghitu Institute of Electronic Engineering and Nanotechnologies

MD.111.	
	The method of oriented growth of single crystals in
Title	anisotropic glass-insulated microwires (for example, Bi
	and Bi-Sn alloys) in a strong electric field.
Authors	Leonid Konopko, Albina Nikolaeva, Ana Kobylianskaya,
	Gheorge Para
	Ghitu Institute of Electronic Engineering and
Institution	Nanotechnologies, Chisinau MD-2028, Moldova
	Republic of
Patent no.	DECISION granting the patent no. 9394 of 2019.10.11
	The invention relates to the field of materials science and
	nanotechnology, but more specifically to the possibilities of
	obtaining a monocrystalline microwire in glass envelope
	with an arbitrary length and predetermined parameters. The
	object of the invention is to develop the technology of
	recrystallization of the microwire in the glass envelope with
	the final aim to obtain the necessary orientation of the main
	crystallographic axis C ₃ in the microwire. The method
	according to the invention consists in that the moving
	microwire is heated to the melting temperature of the core
Description EN	with the formation of a narrow molten zone. The above-
	mentioned area moves along the microwire motion inside
	the capacitor, consisting of two copper plates that generate a
	strong electric field, where by means of the water
	crystallizer crystallize with the direction of the main
	crystallographic axis C ₃ of the microwire in the direction of
	the electric field. The developed recrystallization technology
	in a strong electric field is the main and necessary
	component in the design of anisotropic thermoelectric
	energy converters based on a glass-insulated single-crystal
	microwire made of semimetallic alloys (Bi, Bi-Sn). This
	technology will allow for one cycle to produce highly
	sensitive heat flux sensors and anisotropic thermogenerators
	made from single crystal semimetal microwires in glass
	insulation.

Class no.

14