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Abstract: Cyanobacteria-mediated wastewater remediation is an economical, efficient, and eco-
friendly technology. The present work deals with the bioaccumulation performance of Arthrospira

platensis (Spirulina) grown for four cycles in a medium containing nickel mono- and polymetallic
synthetic effluents. The metal uptake by spirulina biomass was evaluated using neutron activation
analysis. The effects of effluents on biomass production, protein, and phycobiliprotein content
were assessed. Metal accumulation in the biomass depended on the effluent composition and
metal ion concentrations. Nickel accumulation in the biomass was directly proportional to its
concentration in effluents, and maximum uptake (1310 mg/kg) was attained in the Ni/Cr/Fe system.
In the same system, biomass accumulated 110 times more chromium and 4.7 times more iron than
control. The highest accumulation of copper (2870 mg/kg) was achieved in the Ni/Cu/Zn/Mo
system and zinc (1860 mg/kg)—in the Ni/Cu/Zn/Sr system. In biomass grown in the media
loaded with nickel and also chromium, iron, copper, strontium, zinc, and molybdenum, a decrease
in productivity (on average by 10%) during the first cycle of cultivation and moderate reduction
of protein content (by 15–27%) was observed. The presence of metals in the cultivation media
inhibited phycobiliprotein synthesis, especially of phycocyanin, and promoted the synthesis of
allophycocyanin. The maximum reduction of phycocyanin content was 77%, and the increase of
allophycocyanin content—by 45%. Arthrospira platensis may be deemed as bioremediation of nickel-
polluted wastewaters of complex composition.

Keywords: Arthrospira platensis; biochemical analysis; proteins; nickel; neutron activation analysis

1. Introduction

The ever-increasing demands related to the constantly growing population have
resulted in an imbalance in the environment caused primarily by pollution with heavy
metals and xenobiotics [1]. The danger of environmental contamination with heavy metals
is primarily determined by their toxicity even at low concentrations, nonbiodegradability,
and accumulation in living organisms [2,3].

Nickel is one of the most concerning metals, widely applied in many industrial pro-
cesses such as electroplating, forging, ceramics coloring, mineral processing, and the pro-
duction of stainless steel, batteries, non-ferrous metal coins, metallic alloys, and paints [3–5].
Extensive utilization of nickel compounds results in the release of a large volume of in-
dustrial effluents and spent nickel-containing products in the aquatic environment, which
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inevitably leads to an increase in its concentration in various environmental compart-
ments [3]. Globally, the release of nickel in the environment has been estimated to vary
from 150,000 to 180,000 metric tons per year [4]. High concentrations of nickel can cause
different chronic and acute disorders in humans, related to gene toxicity, neurotoxicity, hep-
atotoxicity, damage to the kidneys and lungs, gastrointestinal disorders, and cancer, as well
as symptoms such as shortness of breath, chest pain, skin dermatitis, and vomiting [3]. The
World Health Organization has recommended that nickel concentration in water should
be no more than 0.005 ppm [2]. The US EPA has set specific nickel limits for wastewater
effluents, which are 2 mg/L for short-term effluent reuse and 0.2 mg/L for long-term
effluent reuse [6].

Physical and chemical methods, including chemical precipitation, ion exchange, fil-
tration, coagulation, flocculation, and adsorption, are commonly applied to reduce the
levels of heavy metals in wastewater [5,7,8]. These techniques are ineffective or extremely
expensive, especially when wastewaters contain a relatively low concentration of metals
(1–100 mg/L) dissolved in a large volume of water [8]. The utilization of biological objects
is currently receiving wide attention because of their abundant availability, high removal
capacity, eco-friendly nature, and low operating costs [5,9,10]. Microorganisms are capable
of regulating metal ions and reducing their toxicity through various mechanisms [11].

Cyanobacteria are an extremely diverse group of prokaryotes that perform oxygenic
photosynthesis. Due to their adaptive capacity, along with the ability to tolerate extreme
conditions, they can be found in many aquatic and terrestrial ecosystems, including envi-
ronments contaminated with heavy metals [12,13]. Phytoremediation studies performed
using microalga and cyanobacteria showed their ability to remarkably reduce the level of
toxic chemicals in industrial effluents [13–18].

Arthrospira platensis, known as Spirulina, is a cyanobacteria industrially grown in
different countries and widely used in various fields, including bioremediation processes.
The application of Arthrospira platensis for bioremediation is primarily determined by the
minimal environmental requirements, as this species only needs CO2 to intake and the
presence of light [19]. Spirulina possesses mechanisms ensuring survival under conditions
that differ from the optimal ones. As a model object, Spirulina is used to study the
accumulation of various pollutants, including heavy metals. The results are used to
develop modern biotechnologies for purifying polluted waters. Moreover, Spirulina not
only survives in media with a high content of heavy metals or organic pollutants but also
produces a large amount of biomass under these conditions [19].

Spirulina has been shown to accumulate considerable amounts of heavy metals from
polymetallic systems of varying compositions and to withstand repeated episodes of
pollution [17,18]. In previous studies, it has been shown that Arthrospira platensis was
able to grow for three cycles in copper-containing and chromium-containing effluents.
However, it should be mentioned that in the case of chromium-containing effluents, the
biomass survived only at low chromium concentrations [17,18]. Nickel sorption and
bioaccumulation by living organisms have not received as much attention in the literature
as the removal of other metals, probably because of the relatively low uptake capacities
achieved [20].

The present study aimed to trace the effect of nickel mono- and polymetallic synthetic
effluents on the cyanobacteria Arthrospira platensis during iterative action to investigate its
applicability as a renewable bioremediator.

2. Materials and Methods

2.1. Chemicals

The salts (analytical grade) used to prepare synthetic effluents were Ni(NO3)2·6H2O,
Cu(NO3)2·2.5H2O, Zn(NO3)2·6H2O, Sr(NO3)2, Na2MoO4·2H2O, CrO3. All chemicals used
in the present study were obtained from Sigma Aldrich, Germany.
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2.2. Synthetic Effluents

Wastewaters discharged into freshwater bodies are usually characterized by the pres-
ence of more than one toxic or potentially toxic substance. Therefore, compared to single
metal studies, examining the effects of multi-metal solutions better represents actual envi-
ronmental conditions [21]. Based on data for real wastewater presented previously [22,23],
for the present work, four synthetic effluents in three concentrations variants were prepared,
and their chemical composition and metal ion concentrations are given in Table 1.

Table 1. Composition of synthetic effluents.

Experimental
Variant

Systems
Metal Concentration, mg/L

Ni Cu Sr Zn Cr Fe Mo

1

Ni 2.5 ± 0.07 - - - - - -

Ni/Cu/Sr/Zn 2.5 ± 0.07 0.5 ± 0.01 1.0 ± 0.01 0.5 ± 0.01 - - -

Ni/Cr/Fe 2.5 ± 0.07 - - - 1.0 ± 0.05 1.0 ± 0.05 -

Ni/Cu/Zn/Mo 2.5 ± 0.07 1.0 ± 0.01 - 0.5 ± 0.01 - - 0.5 ± 0.01

2

Ni 5.0 ± 0.1 - - - - - -

Ni/Cu/Sr/Zn 5.0 ± 0.1 1.0 ± 0.05 2.5 ± 0.03 1.0 ± 0.005 - - -

Ni/Cr/Fe 5.0 ± 0.1 - - - 2.5 ± 0.01 2.5 ± 0.011 -

Ni/Cu/Zn/Mo 5.0 ± 0.1 2.5 ± 0.03 - 1.0 ± 0.02 - - 0.5 ± 0.01

3

Ni 10.0 ± 0.1 - - - -

Ni/Cu/Sr/Zn 10.0 ± 0.3 1.0 ± 0.02 5.0 ± 0.03 2.0 ± 0.03 - - -

Ni/Cr/Fe 10.0 ± 0.3 - - - 5.0 ± 0.1 5.0 ± 0.1 -

Ni/Cu/Zn/Mo 10.0 ± 0.3 5.0 ± 0.05 - 2.0 - - 0.5 ± 0.01

2.3. Experiment Design

The Arthrospira platensis (A. platensis) strain CNMN-CB-02 was obtained from collect-
ing non-pathogenic microorganisms at the Institute of Microbiology and Biotechnology
(Chisinau, Moldova). For obtaining inoculum for the first cultivation cycle the cyanobac-
terium was grown in a mineral medium with the following composition: macroele-
ments (g/L): NaNO3—2.5; NaHCO3—8.0; NaCl—1.0; K2SO4—1.0; MgSO4·7H2O—0.2;
CaCl2—0.024; FeSO4·7H2O—0.01; microelements (mg/L): H3BO3—2.86; MnCl2·4H2O –
1.81; ZnSO4·7H2O—0.22; CuSO4·5H2O—0.08; MoO3—0.015. The same medium was used
for the experiment but without the microelements included in the systems.

The experiment was carried out in Erlenmeyer flasks with a working volume of 700 mL.
Spirulina was cultivated at pH of the medium 8–10, temperature 28–30 ◦C, light intensity of
55 µmol photons m−2 s−1, continuous illumination, slow periodic 30-min shaking 2 times
per 24 h with an interval of 12 h with a frequency of 100 r.p.m. (Heidolph UNIMAX 1010,
Heidolph, Germany). The amount of inoculum was 0.4 g/L.

On the fifth day, metal solutions were added to the medium according to Table 1. On
the sixth day, the experiment (I cycle of cultivation) was stopped. Biomass suspension was
divided into three portions: 100 mL for biochemical tests, 300 mL for neutron activation
analysis, and 300 mL for a new inoculum. Each portion of the biomass was centrifuged.
The biomass portion for analysis was washed with distilled water. The biomass for the
biochemical tests was standardized with distilled water to a concentration of 10 mg/mL.
The biomass for neutron activation analysis was dried at 100 ± 2 ◦C.

The procedure was repeated for the second, third, and fourth (II-IV) cultivation cycles.
The control biomass was cultivated under the same conditions without adding metal ions
to the cultivation medium.
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2.4. Neutron Activation Analysis (NAA)

The accumulation of metal ions by A. platensis biomass was assessed using neutron
activation analysis (NAA) at the REGATA facility of the IBR-2 reactor (JINR, Dubna, Russia).
To determine the copper content, samples were irradiated for 3 min at a thermal neutron flux
of 1.2 × 1012 n cm−2 s−1 and measured for 15 min. The content of nickel, zinc, chromium,
iron, strontium, and molybdenum was determined after sample irradiation for 3 days at a
neutron flux of 1.1 × 1011 n cm−2 s−1. Then samples were repacked and measured after
4 and 20 days for 30 min and 1.5 h, respectively. NAA data processing and calculating
element concentrations were performed using Genie2000 and the software “Concentration”
developed in JINR.

The quality control of the measurements was assured by simultaneous irradiation of
the samples and standard reference materials. The difference between the experimentally
obtained and certified values did not exceed 10%.

2.5. Biochemical Analysis

Biomass quantity was determined spectrophotometrically (Spectrophotometer T80 UV/VIS,
PG Instruments Ltd., Alma Park, Woodway Lan, Wibtoft Leicestershire, UK) by measuring the
absorbance of the spirulina suspension at 750 nm before centrifugation.

The protein content was measured according to the Lowry method based on the Biuret
reaction and the reaction with the Folin-Ciocalteu reagent. The phycobiliprotein content
was determined spectrophotometrically as per the method described by Siegelman and
Kycia. The results were expressed in % biomass. A detailed description of the biochemical
test is given in our previous study [24].

2.6. Statistical Analysis

All experiments and measurements were performed in triplicate. One-way analysis of
variance (ANOVA) was performed using Statistica 10 (Student’s t-tests). Data in all Tables
and Figures are presented as mean value ± SD.

3. Results and Discussion

Compared to other prokaryotes, the photosynthetic machinery in cyanobacteria im-
poses higher demand for metals. Thus, Fe is necessary for all three photosynthetic electron
transfer chain complexes, Mn for the water-splitting complex, Cu for plastocyanin and
cytochrome c oxidase, Mg for chlorophylls, and Zn for carbonic anhydrase [12]. Nickel,
along with Zn, Cu, Mo, and Fe, are essential nutrients for microorganisms since they partic-
ipate in various cellular processes [25]. According to literature data, nickel is present in the
main part of commercially available spirulina products. Thus, in 23 samples of spirulina
produced in Australia, the USA, Great Britain, Japan, India, Canada, and New Zealand,
its content varied from 0.21 to 4.6 mg/kg d.w. [8]. In the present study, nickel content in
control spirulina biomass was 11.8 mg/kg.

3.1. Ni System

The addition of nickel ions at different concentrations (according to Table 1) to the
cultivation medium increased their content in the biomass (Figure 1). That is in agreement
with Rugnini et al. [21]. However, the efficiency of metal uptake depended on the cycle
of cultivation. Thus, in the system containing 2.5 mg/L of nickel ions, the highest accu-
mulation of nickel ions was noticed during the first cultivation cycle, when the biomass
accumulated 7 times more nickel ions than control. Over the next three cultivation cycles,
their content in biomass was 5.1–5.7 times higher than control but lower than in the first
cycle. At nickel concentration in solution 5 mg/L, its content in biomass was 4.6–4.7 times
higher than in control. Thus, the accumulation of nickel ions by Spirulina platensis biomass
at concentrations in the solution of 2.5 and 5 mg/L was almost at the same level. Increased
nickel concentration up to 10 mg/L in solution led to a significant increase (p < 0.001) of its
content in biomass, 17–20 times in comparison with control. The most pronounced increase
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was observed in the first cycle of cultivation, by 1560%, with respect to control. In the next
three cultivation cycles, the increase in nickel uptake was less significant. Thus, in the
second cycle, it was 14% higher than in the first cycle. In the third cycle, a slight decrease
(by 2.3%) was noticed, while in the fourth cycle, an increase of 8.7% took place.

Figure 1. Accumulation of nickel ions in spirulina biomass during repeated cultivation in a medium
containing nickel ions at concentrations of 2.5–10 mg/L. a: p < 0.001 for the difference between
experimental and control samples; b: p < 0.001 for the difference with the first cycle; c: p < 0.001 for
the difference with the second cycle.

Cyanobacteria Anabaena cylindrica, Anabaena flos-aquae, and Nostoc sp. accumulated
2–6 mg/g of nickel at a 10 mg/L concentration in solution [26]. The uptake of nickel ions
in the present study was lower compared to values presented by Rugnini et al. [21] for two
cyanobacteria, Chlorella vulgaris and Desmodesmus sp., although the range of the studied
concentrations in both studies was very similar. The maximum accumulation of nickel
by Synechococcus sp. IU 625 occurred on the fifth day of biomass growth; however, nickel
was undetectable inside the cells on day 11. The release of nickel ions from biomass can
be explained by overexpression of the smtA gene and other alternative mechanisms. At
the same time, it should be mentioned that Synechococcus sp. IU 625 demonstrated high
resistance to nickel ions, maintaining high biomass growth rates at nickel concentrations in
the cultivation medium of 10 and 25 mg/L [27].

The addition of nickel ions to the medium in concentrations of 2.5–10 mg/L for the
first cultivation cycle did not significantly affect spirulina biomass accumulation (Figure 2).

At the end of the first cultivation cycle, the biomass was reduced insignificantly by
5–6%, and this response was the same for all applied nickel concentrations. In the next two
cycles, in all analyzed systems, the amount of biomass returned to control values. At the
end of the fourth cycle, the amount of biomass was reduced in all analyzed systems, as
the resulting values were 0.73, 0.78, and 0.75 g/L for nickel concentrations at 2.5, 5, and
10 mg/L in the medium, respectively. For a nickel concentration of 2.5 mg/L, biomass
reduction in the fourth cultivation cycle was significant (p < 0.001) compared to the second
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and third cycles. At a nickel concentration of 10 mg/L, the decrease in the fourth cycle
was significant (p < 0.001) compared to control and other cycles of biomass growth, while
at a concentration of 5 mg/L the reduction was insignificant. Thus, the reported in [28]
dose-dependent decrease of Spirulina indica, Spirulina maxima, and Spirulina platensis growth
with the increase of nickel concentration in the medium was not observed in the present
work even at repeated cultivation.

 
Figure 2. The amount of biomass in spirulina cultivated in a medium containing nickel ions at
concentrations of 2.5–10 mg/L during four cycles. a: p < 0.001 for the difference between experimental
and control samples; b: p < 0.001 for the difference from the first cycle; c: p < 0.001 for the difference
from the second cycle.

Spirulina platensis is one of the richest protein sources of microbial origin containing
46–63% dry biomass (DB) of this nutrient [29]. Proteins serve multiple purposes as struc-
tural components, enzymes, membrane transporters, signaling molecules, or regulatory
factors. In cyanobacteria, some proteins as, for example Psb27, are important in photo-
system II (PSII) repair, while others, like PetP, are involved in the stress adaptation of the
photosynthetic electron transport [30].

Spirulina’s response to nickel ion effects in the first cultivation cycle was manifested
by reducing biomass and protein content. However, in the next cycles, spirulina adaptation
to the new conditions of growth was observed (Figure 3).

In spirulina biomass growing in the media containing 2.5 and 5 mg/L of nickel ions,
at the end of the first cultivation cycle, the content of proteins in biomass significantly
decreased by 12–15% (p < 0.001). Nickel concentration of 10 mg/L led to the reduction
of protein content by 19%. This could be due to the stress caused by the nickel ions
present in the culture medium. In microorganisms, nickel toxicity is expressed in the
inhibition of metalloproteins, interaction with enzyme active site His or Cys residues, and
enhancement of oxidative stress [31]. Starting with the second cultivation cycle, at all nickel
concentrations, the protein content of biomass increased in comparison with the first cycle.
At a nickel concentration of 2.5 mg/L in the medium, the content of proteins over the
next three cycles almost reached control values. The difference between the second–fourth



Microorganisms 2022, 10, 1041 7 of 19

cycles and the first cycle was statistically significant (p < 0.001). At a nickel concentration
of 5 mg/L in the medium, the maximum amount of proteins was attained in the third
cultivation cycle. This value was significantly higher (p < 0.001) than the first two cycles,
but it did not differ essentially from control.

Figure 3. The content of proteins and phycobiliproteins in spirulina biomass cultivated in a medium
containing nickel ions at 2.5–10 mg/L over four cycles. a: p < 0.001 for the difference between
experimental and control samples; b: p < 0.001 for the difference from the first cycle; c: p < 0.001 for
the difference from the second cycle.

The increase in protein content can be explained by the excretion of nickel ions from
the cell. Huertas et al. [27] showed that an excess of nickel that could cause a perturbation
of protein function is counterbalanced by the presence of efflux pumps that expel it out
of the cell. The slight increase or decrease of nickel content compared to the first cycle
confirmed this fact.

In cyanobacteria, phycobiliproteins, large water-soluble supramolecular protein aggre-
gates serve as major accessory pigments in photosynthesis. They can be divided broadly
into three classes: phycoerythrin, phycocyanin, and allophycocyanin, based on their spec-
tral properties [32]. Spirulina contains two of these pigments—phycocyanin and allophy-
cocyanin. In all experimental variants, the amount of phycobiliproteins was significantly
lower (p < 0.001) compared to control (Figure 3).

In the experimental variants with nickel concentrations of 2.5 and 5 mg/L, at the
end of the first cultivation cycle the content of total phycobiliproteins in biomass was
reduced by 43–51%. Consecutive cultivation in the second cycle was beneficial for the
culture. The amount of phycobilin increased by 51% and 61% compared to the first cycle.
However, it was lower by 13 and 20% compared to control biomass. The tendency to restore
phycobiliprotein content was maintained for two further cultivation cycles. At the end
of the fourth cycle, the phycobiliprotein content increased by 19 and 53%, respectively,
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compared to values obtained in the first cycle. At the same time, it was lesser than control
by 32% and 24%, respectively.

In the case of the application of 10 mg/L, the decrease of the phycobiliprotein content
by 38% in the first cycle was followed by an increase of 44% in the second cycle, and in the
next two cycles it remained slightly lower compared to the first cycle. Thus, the introduction
of nickel ions in the culture medium induced the inhibition processes of phycobiliprotein
synthesis, regardless of the applied concentration. A dose-dependent decrease of protein
content with an increase in nickel concentration was observed for Spirulina strains [33].

Significant reduction in phycobiliprotein content was mainly determined by decreas-
ing phycocyanin by more than 50% in the first and fourth cycles of biomass growth
(Figure 3). By adding 2.5 mg/L of nickel in the first cycle, the phycocyanin content de-
creased by 53%, compared to 23% in control and allophycocyanin. A recovery attempt was
observed in the second and third cycles, but phycocyanin values remained low (30–35%
below the control values). In the case of allophycocyanin, its content in the second cycle
increased significantly by 21% (p < 0.001) compared to control and was maintained in the
third cycle. In the last cycle, the allophycocyanin content was at the control level.

At the introduction of 5 mg/L of nickel in the cultivation medium and the end of the
first cultivation cycle, phycocyanin content decreased by 63% and allophycocyanin by 26%
compared to control. The tendency to rectorate the phycocyanin content during repeated
cultivation in the medium containing nickel ions failed. Its content in the fourth cycle was
39% lower than the control value. At the same time, the content of allophycocyanin returned
to the control values. The least favorable situation was observed at a nickel concentration
of 10 mg/L when in the first cycle of cultivation, the phycocyanin content was reduced
by 52% and at the end of the fourth cycle by 66%. The content of allophycocyanin was
significantly lower (p < 0.001) compared to control in the first, third, and fourth cycles
and higher in the second cycle. Thus, upon repeated contact with the metal in the second
cycle, the spirulina culture restored its allophycocyanin level, but the repeated action of the
pollutant eventually leads to a stable reduction of the pigment content.

It is known that both phycocyanin and allophycocyanin bind heavy metal ions dif-
ferentially, whereas phycocyanin has a higher affinity for them. Thus, metal binding
preferentially to phycocyanin can be one of the reasons explaining the significant decrease
in their content [34]. The same authors reported that silver and copper ions show mini-
mal binding to allophycocyanin, as they induce structural changes such as a decrease in
absorbance and fluorescence of phycocyanin.

3.2. Ni/Cr/Fe System

In the Ni/Cr/Fe system at nickel concentration in the solution of 2.5 mg/L, after
the first cycle of cultivation, nickel content in biomass was 10 times higher than control
(Figure 4). In the next three cycles, its content in biomass decreased approximately twice
and was almost on the same level. At nickel concentration in solution 5 mg/L, its content
in biomass increased 37–55 times.

The most significant increase was noticed in the second cycle when nickel content in
biomass exceeded control value by 83–111 times. At nickel concentration of 10 mg/L, the
most pronounced increase was observed in the first cultivation cycle, then in the next three
cycles, it decreased by 22–25% compared to the first cycle. The amount of Ni accumulated
by the biomass in Ni/Cr/Fe systems was 1.5–11 times higher than in the system containing
only nickel ions.

Chromium content in control biomass was below the detection limit of NAA. How-
ever, its content in the system containing Cr(VI) ions varied from 17 to 110 mg/kg. At a
chromium concentration of 1.25 mg/L, the content of the element accumulated in biomass
was approximately the same during all cultivation cycles. At a concentration of 2.5 mg/L
in the first cycle of cultivation, the spirulina biomass accumulated 3 times more chromium
compared to the medium with a concentration of 1.25 mg/L. In the second cycle, this
amount increased to 90 mg/kg. In the next two cycles, the amount of chromium accumu-
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lated decreased twice compared to the second cycle. At chromium concentration of 5.0
mg/L, the highest amount of the element was accumulated in the first cycle of cultivation,
after which it decreased and remained at the same level for the next three cycles.

Figure 4. Accumulation of metal ions in spirulina biomass during its repeated cultivation in
the medium containing metal ions at concentrations: nickel 2.5–10 mg/L, chromium and iron
1.25–5 mg/L. a: p < 0.001 for the difference between experimental and control samples; b: p < 0.001
for the difference from the first cycle; c: p < 0.001 for the difference from the second cycle.

Iron accumulation in biomass also increased with the increase of its concentration
in the solution. With the addition of 1.25 mg/L of iron ions, the content in biomass
continuously increased over three cultivation cycles, and then it decreased to the level
of control. At higher Fe concentrations, 2.5 and 5 mg/L, the same pattern was observed.
However, in these experimental variants, after four cultivation cycles, Fe content in biomass
was 3.7 and 4.7 times higher than in control, respectively. As in the case of the Ni system,
the removal of metal ions from cells to decrease the toxic effect on spirulina was observed.

For spirulina grown in the medium containing ions of three metals, nickel, chromium,
and iron, at the end of the first cycles in all experimental variants, the biomass decreased
by 7–12%. However, only in the case of the first experimental variant was this difference
significant (p < 0.001) compared to control. In the other cases, there was a tendency for
reduced biomass productivity (Figure 5). In the next three cycles, biomass was on the level
of control or overpassed it. Thus, in the first experimental variant, the amount of biomass in
the second cycle was significantly higher than control. In the second experimental variant,
the amount of biomass was higher than control in the second and third cycles. In the rest of
the cases, the obtained values were at the level of control.
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Figure 5. The amount of spirulina biomass during repeated cultivation in a medium containing metal
ions at concentrations: nickel 2.5–10 mg/L, chromium and iron 1.25–5 mg/L. a: p < 0.001 for the
difference between experimental and control samples; b: p < 0.001 for the difference with the first
cycle; c: p < 0.001 for the difference with the second cycle.

While assessing the effect of nickel concentration on biomass, it was noticed that at
concentrations of 2.5 mg/L and 10 mg/L, the maximum metal accumulation took place
in the first cycle of cultivation, leading to decreased spirulina productivity. In the next
two cycles, nickel content in biomass was reduced by 2 and 1.3 times, respectively, while
biomass increased by 12–14% compared to control. The highest accumulation of iron, in
all experimental variants, was observed in the second and third cycles. Thus, dependence
between the accumulation of Fe and biomass production can be assumed, although it
occurred at levels characteristic of the strain under study. At the same time, it should
be noted that in the nickel mono-system, in the first and third experimental variants, the
amount of biomass was significantly lower than control, while in the analyzed poly-systems,
this effect was not observed.

Protein content in the first experimental variant (at a Ni concentration of 2.5 mg/L)
was not significantly affected by metal ions in the cultivation medium during repeated
cultivation (Figure 6).

For the second and third variants (5 mg/L and 10 mg/L), the content of proteins at
the end of the first cycle was significantly reduced by 17–20% (p < 0.001). A tendency
to restore the protein content towards the end of the fourth cycle was observed. In the
second experimental variant, the amount of protein in spirulina biomass at the end of the
second–fourth cycles did not differ significantly from control. The situation was different
in the third experimental variant. Although there was a tendency to restore the protein
content in cycles II-IV, it remained significantly lower than control.

In the first experimental variant, the content of phycobiliproteins decreased insignif-
icantly, by 19% in the first cycle of cultivation and by 39–46% in the next three cycles
(Figure 6). The phycocyanin content decreased drastically, by 31–62%, compared to control.
The allophycocyanin content did not change significantly. The maximum decrease of 19%
took place in the second cycle.
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Figure 6. The content of proteins and phycobiliproteins in spirulina during repeated cultivation
in the medium containing metal ions at concentrations: nickel 2.5–10 mg/L, chromium and iron
1.25–5 mg/L. a: p < 0.001 for the difference between experimental and control samples; b: p < 0.001
for the difference from the first cycle, c: p < 0.001 for the difference from the second cycle.

In the second experimental variant, a critical decrease in the content of phycobilipro-
teins took place in the second and third cycles. Their value was 63% lower than the control.
At the end of the fourth cultivation cycle, the content of phycobiliproteins remained low,
the value 35% lower than control. The phycocyanin content decreased by 56% in the first
cycle and 76–77% in the second and third cycles. The allophycocyanin content was reduced
by 20–38% during the first three cultivation cycles and returned to normal values in the
fourth cycle.

It is interesting that in the third experimental variant, the content of phycobiliproteins
changed less during repeated cultivation and decreased by 26% compared to control in the
fourth cycle. Content of phycocyanin in the first and fourth cycles was also significantly
reduced, by 31–43% (p < 0.001), while the allophycocyanin content remained almost un-
changed. In the second and third cycles, the content of phycobiliproteins and phycocyanin
did not change, and an increase in the content of allophycocyanin by 45% was noted. In our
previous study, we showed that in spirulina biomass grown in a Cr/Fe system, the content
of phycobiliproteins was reduced by approximately 70% [18]. Since Bellamy-Carter and
co-authors [34] reported little to no binding of iron ions by phycobilins, it can be suggested
that nickel and chromium are responsible for the decrease of phycobiliproteins.

3.3. Ni/Cu/Sr/Zn System

In the Ni-Cu-Sr-Zn system in the first experimental variant, the nickel content in
biomass increased during three cycles of cultivation by 6.9–22 times compared to control.
In the fourth cycle, it declined to the level of the second cycle (Figure 7). The level of nickel
accumulation was higher compared to the monometallic system, where the maximum
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amount of nickel, 80 mg/kg, was accumulated in the first cycle; and compared to the
Ni/Cr/Fe system, where biomass accumulated up to 100 mg/kg of nickel in the first cycle
of cultivation. In the analyzed system, maximum accumulation of nickel (250 mg/kg) was
achieved in the third cycle, and it was 2.5–3.0 higher than the Ni and Ni/Cr/Fe systems.

 
Figure 7. Accumulation of metal ions in spirulina biomass during repeated cultivation in the
medium containing metal ions at concentrations: nickel 2.5–10 mg/L, copper 0.5–1 mg/L, strontium—
1–5 mg/L, and Zn—0.5–2 mg/L. a: p < 0.001 for the difference between experimental and control
samples; b: p < 0.001 for the difference from the first cycle; c: p < 0.001 for the difference from the
second cycle.

Copper was detected in biomass only after the first cycle of cultivation. Accumulation
of strontium by biomass was similar to the nickel uptake. It increased over three cultivation
cycles, and then, in the fourth cycle, it decreased below the control level. Zinc was the
only element whose content in biomass continuously decreased from 186 mg/kg in control
biomass to 23 mg/kg after four cycles of cultivation.

In the second experimental variant, maximum metal accumulation was achieved in
different cycles: nickel (646 mg/kg) in the third cycle of cultivation, and copper (192 mg/kg)
and strontium (343 mg/kg) in the first cycle. Then their content in biomass decreased
in comparison to the maximum accumulated amount, but it was higher than in control
biomass. For zinc, it was noted the same pattern as in the first experimental variant, as its
content in biomass decreased by 86% compared to control. The decrease of zinc content in
biomass can be explained through replacement by other metal ions, in particular copper,
present in the analyzed system. Copper displays a high affinity for metalloproteins, and if
equivalent quantities of all divalent metals were present, proteins would probably all bind
copper [35]. The decrease in zinc content can also be explained by the inhibition of zinc
metalloenzymes by nickel [36]. The reduction of strontium content can also be explained by
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its replacement with nickel ions [33]. In general, the content of nickel in biomass increased
5–55 times, of Cu 20–198 times, and of Sr 1.3–5.7 times.

An interesting pattern was observed in the third experimental variant. Nickel, stron-
tium, and zinc content in biomass continuously increased over the cycles. Thus, the amount
of nickel accumulated by biomass increased from 1200% in the first cycle to 3300% in the
fourth cycle compared to control. Zinc behavior in the third experimental variant was
different from the other experiments. It was characterized by the increase of its content in
biomass by a factor of 10 with respect to control. The maximum amount of copper was
accumulated by the biomass in the second cycle of cultivation (815 mg/kg), and then it
slightly decreased in the next two cycles of cultivation (approximately 9%). The possible
mechanisms of cyanobacteria resistance to heavy metals include complexation and active
efflux [37]. Accumulation of lesser nickel content compared to the second experimental
variant indicated that its efflux is the main mechanism of spirulina resistance. Continuous
accumulation of strontium and zinc suggested their binding to metallothioneins, which
are synthesized under heavy metal stress [37]. In the case of copper, both mechanisms of
cyanobacteria resistance are possible.

Accumulation of nickel, copper, zinc, and strontium in spirulina did not have a
negative impact on biomass production during consecutive cultivation in a metal-loaded
medium (Figure 8). In all experimental variants, the culture’s response to the introduction
of metals in the cultivation medium was similar to the Ni system. It was characterized by a
decrease in biomass by 10% compared to control at the end of the first cycle. This difference
was statistically insignificant.

Figure 8. The amount of biomass in spirulina during its repeated cultivation in the medium contain-
ing metal ions at concentrations: nickel 2.5–10 mg/L, copper 0.5–1 mg/L, strontium—1–5 mg/L,
and zinc—0.5–2 mg/L. a: p < 0.001 for the difference between experimental and control samples;
b: p < 0.001 for the difference from the first cycle; c: p < 0.001 for the difference from the second cycle.

In the first and third experimental variants over the next three cycles, the biomass
was maintained at the level of control. In the second experimental variant, there was an
increase in biomass productivity by 14–18% at the end of the second and third cultivation
cycles. The maintenance of high biomass productivity under loading of chemical elements
indicated adaptation of spirulina biomass to the new growth conditions.

The content of proteins in spirulina grown with the addition of Ni/Cu/Sr/Zn was
also insignificantly affected by the presence of metal ions (Figure 9). As in the case of
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biomass productivity, in all experimental variants, the content of proteins in biomass at
the end of the first cycle decreased by 13–15% with respect to control. Restoration of the
protein content took place in consecutive cultivation cycles and reached the level of control.

Figure 9. The content of proteins and phycobilins in spirulina biomass during repeated cultivation
in the medium containing metal ions at concentrations: nickel 2.5–10 mg/L, copper 0.5–1 mg/L,
strontium—1–5 mg/L, and Zn—0.5–2 mg/L. a: p < 0.001 for the difference between experimental
and control samples; b: p < 0.001 for the difference from the first cycle; c: p < 0.001 for the difference
from the second cycle.

The addition of elements according to the first experimental variant resulted in de-
creased content of phycobiliproteins at the end of the first cycle by 21%. It maintained its
low in the second cycle, reaching values approximately equal to control, but in the third
and fourth cycles it was significantly lower. In the second experimental variant, the critical
content of phycobiliproteins was obtained during the second cycle of cultivation, when
their content was 44% lower than control. At the end of the fourth cycle of cultivation, the
phycobiliprotein content was restored, and the values were 15% lower than control. In the
case of the third experimental variant, in the first cycle, the phycobilin content decreased
by 22% compared to control. In the second cycle, their content was approximately equal to
control. However, in the next cycles, it was reduced again to the level of the first cycle.

The significant reduction in phycobiliprotein content was caused by decreased phyco-
cyanin quantity. In the first experimental variant, during the first two cultivation cycles,
the phycocyanin content decreased by 63% compared to the control, while in the third
and fourth cycles, its content increased and reached a value 32% lower than control. The
allophycocyanin content increased over the four cultivation cycles by 20–28%.

The same tendency was observed in the second experimental variant. In the first two
cycles, the maximum reduction of phycocyanin was 67%. In the next two cycles, it started



Microorganisms 2022, 10, 1041 15 of 19

to increase, and by the end of the fourth cycle, it was lower than control by 39%. The
allophycocyanin content increased during cultivation by 23–32%.

A different response was established for the third experimental variant, in which, in
the first cycle of cultivation, the phycocyanin content decreased by 31% below the control.
However, it tended to get restored in the second cycle, but it was again reduced in the next
two cycles. Allophycocyanin, which content in the first cycles was on the level of control,
increased in the next cycles by 30% compared to control. Zinc, copper, and nickel can be
responsible for decreasing phycobiliprotein content. Reducing phycobiliprotein content in
the presence of zinc, copper, and nickel ions in the cultivation medium were also reported
in other studies [17,38,39].

3.4. Ni/Cu/Zn/Mo System

In the Ni-Cu-Zn-Mo system, in the first experimental variant, spirulina biomass
survived only for one cycle (Figure 10). At the end of the first cycle of cultivation, spirulina
accumulated 40% of protein, an amount insufficient for biomass growth recovery. One of
the main reasons for such an effect can be the low zinc content in the system.

 

Figure 10. Accumulation of metal ions in spirulina biomass during repeated cultivation in the
medium containing metal ions at concentrations: nickel 2.5–10 mg/L, copper 1–5 mg/L, zinc
0.5–2 mg/L, and molybdenum 0.5 mg/L. a: p < 0.001 for the difference between experimental
and control samples; b: p < 0.001 for the difference from the first cycle; c: p < 0.001 for the difference
from the second cycle.

As a result, the nickel content in biomass increased 5 times, the content of copper
59 times, and the quantity of molybdenum was 3.5 mg/kg. The zinc content in biomass
decreased by 25% compared to control.

In the second experimental variant, even though the metal concentrations in the
solution were higher, the biomass could grow for four cycles. Additionally, the solution
of specified chemical composition resulted in increased copper content in biomass by a
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factor of 1110 in the first cycles of cultivation. In the next cycles, Cu was not detected in
biomass. The same pattern was marked for molybdenum, which content was reduced
from 4.5 mg/kg (first cycle of cultivation) to an undetectable level (fourth cycle). The zinc
content in biomass continuously decreased over the cycles compared to control, while
nickel increased (3–5/5.1 times). Adaptation to high metal concentration in cyanobacteria
is manifested through several mechanisms: the ability to excrete to the media-heavy
metal ligands, like siderophores or extracellular polymeric substances, the production of
metallothioneins, or the induction of metal transporters [28].

In the third experimental variant, maximum accumulation of all metal ions present
in the mixture took place in the first cultivation cycle: 40 times for nickel, 2870 times for
copper, 9.4 times for zinc, and 4.6 mg/kg for molybdenum. In the next three cycles, a
drastic decrease in metal uptake was noticed. By the fourth cycle, copper and molybdenum
were not detected in biomass, zinc content was lower by 88% than in control, while nickel
was 17 times. Nickel adversity in microorganisms is mostly due to its ability to interfere
with or replace other essential minerals, such as iron, zinc, copper, calcium, magnesium,
molybdenum, iodine, potassium, and sodium in cells [33]. The observed reduction of the
levels of zinc, copper, and molybdenum in biomass support this fact.

As mentioned previously, in the first experimental variant, the spirulina biomass was
able to grow only for one cycle, and the biomass was 12% lower (statistically insignificant)
than the control (Figure 11). In this case, a correlation between productivity and the
accumulation of metals in biomass cannot be determined. In the second experimental
variant, the biomass productivity was lower by 10–13% (statistically insignificant) than in
control. The biomass content obtained in the third experimental variant did not appreciably
change over the repeated cultivation in a metal loaded medium.

 

Figure 11. The amount of biomass in spirulina during repeated cultivation in the medium con-
taining metal ions at concentrations: nickel 2.5–10 mg/L, copper 1–5 mg/L, zinc 0.5–2 mg/L, and
molybdenum 0.5 mg/L.

The biomass obtained in the first experimental variant at the end of the first cycle
of cultivation contained 41.4% of proteins, which was 37% less compared to the control
sample (Figure 12). In the second experimental variant, the values of the protein content
in biomass over the four cycles of repeated cultivation were relatively stable and slightly
below the control level, and the differences were statistically insignificant. In the third
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experimental variant, the metal ions negatively influenced protein synthesis during two
consecutive cultivation cycles. The value initially decreased by 27% but then returned to
control during the third and fourth cultivation cycles.

Figure 12. The content of proteins and phycobiliproteins in spirulina during repeated cultivation in
the medium containing metal ions at concentrations: nickel 2.5–10 mg/L, copper 1–5 mg/L, zinc
0.5–2 mg/L, and molybdenum 0.5 mg/L. a: p < 0.001 for the difference between experimental and
control samples; b: p < 0.001 for the difference from the first cycle; c: p < 0.001 for the difference from
the second cycle.

The content of phycobiliproteins in the analyzed system changed differently. Thus, in
the first experimental variant, it decreased by 12%. In the second experimental variant, a
continuous decrease of phycobiliproteins took place, except in the third cycle, in which the
content slightly increased compared to the first and second cycles. The most pronounced
decrease was in the fourth cycle, 39% compared to control. In the third experimental
variant, the decrease of phycobiliproteins in the first two cycles was accompanied by an
increase in the next two cycles. The change in the content of phycocyanin followed the
same trend as the case of phycobiliproteins. The most pronounced decrease was noticed
in the fourth cycle of the second experimental variant, by 40% compared to control. The
allophycocyanin content in the first and second experimental variants was on the level of
control or higher (by 14–22%). In the third experimental variant, an abnormal decrease of
allophycocyanin by 50% in the second cycle was observed, while in the other cycles, it was
higher than control (by 7–22%).

The performed experiments demonstrated that A. platensis could be considered a
candidate for wastewater treatment on an industrial scale. The biomass’s ability to grow
for several cycles in metal contaminated media allows the reduction of operational costs
for the process. Further studies are required to develop equipment that could provide,
in automatic mode, the cultivation of A. platensis, wastewater supply, and removal of the
treated water.
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4. Conclusions

The possibility of applying cyanobacteria A. platensis to treat nickel containing mono
and polymetallic effluents was tested. Biomass was able to grow, except for the first
experimental variant of the Ni/Cu/Zn/Mo system, for four cycles in a metal-loaded
medium. The rate of metal uptake by biomass depended on the chemical composition
and metal concentrations of the effluents. The highest amount of nickel was accumulated
in biomass grown in the Ni/Cr/Fe and Ni/Cu/Sr/Zn systems. Nickel accumulation
inhibited to a different extent the uptake of copper, strontium, zinc, and molybdenum by
spirulina biomass. The negative effects of the analyzed systems on biomass productivity
and protein content were observed mainly in the first cycle of biomass growth. Recovery
of biomass and protein content in the next cycles indicated biomass adaptation to new
growth conditions. Phycobiliproteins were mainly affected by the action of metal ions.
The significant decrease of phycocyanin compared to allophycocyanin confirmed metal
affinity concerning the former. A. platensis can be considered a potential bioremediator for
wastewater treatment. However, its bioaccumulation capacity is strongly dependent on the
chemical composition of wastewater.

Author Contributions: Conceptualization, L.C. and I.Z.; methodology, L.C., T.C., S.D. and L.R.;
software, I.Z.; validation, L.C.; formal analysis, L.C., D.G., N.Y. and L.R.; investigation, all authors;
data curation, all authors; writing—original draft preparation, I.Z.; writing—review and editing, L.C.
and I.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pandey, S.; Dubey, S.K.; Kashyap, A.K.; Jain, B.P. Cyanobacteria-mediated heavy metal and xenobiotics bioremediation. In
Cyanobacterial Lifestyle and Its Applications in Biotechnology; Academic Press: Cambridge, MA, USA, 2022; pp. 335–350.

2. Pahlavanzadeh, H.; Motamedi, M. Adsorption of nickel, ni(ii), in aqueous solution by modified zeolite as a cation-exchange
adsorbent. J. Chem. Eng. Data 2020, 65, 185–197. [CrossRef]

3. Vakili, M.; Rafatullah, M.; Yuan, J.; Zwain, H.M.; Mojiri, A.; Gholami, Z.; Gholami, F.; Wang, W.; Giwa, A.S.; Yu, Y.; et al. Nickel
ion removal from aqueous solutions through the adsorption process: A review. Rev. Chem. Eng. 2021, 37, 755–778. [CrossRef]

4. Kinuthia, G.K.; Ngure, V.; Beti, D.; Lugalia, R.; Wangila, A.; Kamau, L. Levels of heavy metals in wastewater and soil samples
from open drainage channels in Nairobi, Kenya: Community health implication. Sci. Rep. 2020, 10, 8434. [CrossRef] [PubMed]

5. Taha, A.A.; Ahmed, A.M.; Abdel Rahman, H.H.; Abouzeid, F.M.; Abdel Maksoud, M.O. Removal of nickel ions by adsorption on
nano-bentonite: Equilibrium, kinetics, and thermodynamics. J. Dispers. Sci. Technol. 2017, 38, 757–767. [CrossRef]

6. United States Environmental Protection Agency. US EPA Guidelines for Water Reuse Preliminary Pages September 2004; United States
Environmental Protection Agency: Washington, DC, USA, 2004.
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