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INTRODUCTION 

 
The study [8] was devoted to solution of the 

problem of representation of a real material in the 
structural model of micro-heterogeneous medium 
[1-5]. The experiments were established on the 
basis of which the rheological functions of 
subelements can be identified unequivocally. 

However, the need to test the thin-walled 
tubes subjecting to the action of the internal 
pressure iP  and the axial force F  at different 
constant rates of the gripping device movement and 
different temperatures narrows the possibilities of 
use of the published experimental data, which 
mainly represent results of the thin-walled tubes 
tests by axial tension at constant rates of the 
gripping device movement constdzz =  or by torque 
at constant rates of change of the torsion angle 

constd z =ϕ  ( ϕ,,rz  is the cylindrical coordinate 
system). 

We will demonstrate how to with sufficient 
degree of precision the problem of representation of 
a real material in the structural model can be solved 
on the basis of data obtained for the thin-walled 
tubes by putting to the uniaxial tensile test. 

 
 

1. THE STATE PARAMETERES 
 

The macroscopic element, being at the initial 
time in natural state, is subjected to mechanical and 
thermal action. Material behavior during 
deformation is supposed to depends significantly on 
the rate of loading and heating. To describe the 
micro-heterogeneous medium behavior the macro-
scopically homogeneous volume element V0 of the 
polycrystalline body is considered to be composed 
of an infinite number of kinematically connected 
subelements with different thermorheological 
features. Subelement as the elementary structure 
identifies the set of all material particles in the 
interior domain V0 that have the same irreversible 
strain tensors. 

Within the limits of the examined model let 
us assume that all types of interactions between 
subelements in the conglomerate are formed only 
under the influence of average connections, i.e. 
material particles in the conglomerate do not 
deform independently, but only in a coordinated 
manner. The interaction between two subelements 
is realized by means of the interactions between 
material particles which are appertained to the 
different subelements. This fact is reflected by 
replacement of the local state parameters in physical 
equation for subelement on the average values of 
the whole set. 

The thermoviscoplastic properties of subele-
ments within the limits of the structural model 
[2,5,8] may be determined on the basis of diagrams 
of the proportional loading ( )υγ ,,pee =  at different 
constant values of the state parameters γ  and υ . 

The state parameter υ  describes rheological 
effects of the subelement, and is expressed by the 
ratio of the volume variation and its limit possible 
value, being the same for all subelements 
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Differentiating with respect to time we find the 
loading conditions at const=υ : 
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Assuming that at the low level of irreversible 
deformations the elastic volume variation exceeds 
considerably the irreversible 
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we obtain that the rate of temperature’s change is 
proportional to the rate of average stress’s change 
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Thus, the deformation at const=υ  
corresponds to isothermal loading if 1=β . 

Rate of irreversible deformation trajectory 
length’s change is the state parameter that reflects 
the sensitivity of subelement to rate of external 
action’s change: 
 

.ijij pp=λ                        (6) 
 

Average rate of irreversible deformation’s 
change in subset of subelements, being under 
loading above the elastic limit, is another state 
parameter 
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where ψ  is the distinctive parameter of subelement 
and coincides, during the initial loading, with the 
weight of irreversibly deformed subelements when 
given subelement exceeded the elastic limit; λψ  – 
summary weights of subelements for which the 
parameter λ is nonzero. 

In monotonous processes throughout the 
subset of irreversibly deformed subelements an 
active process of loading occurs, that corresponds to 
the monotony of the evolution of weight of 
irreversibly deformed subelements in this process. 
This means that towards ψ  only one separation 
boundary forms between reversibly 1≤<′ ψψ  and 
irreversibly ψψ ′≤≤0  deformed subelements. 

Taking into account the law of the admissible 
trajectories [1,5,7] and the fact that in the 
monotonous processes the variations pd  in all 
subelements have one and the same sign, we can 
write 
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In the monotonous process of deformation 
along a rectilinear trajectory 
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2. UNIAXIAL TENSILE TESTS AT 
DIFFERENT RATES OF THE GRIPPING 

DEVICE MOVEMENT 
 
In the study [8] to calculate the parameter γ  

on the basis of tests of the thin-walled tubes being 

under the influence of the internal pressure iP  and 
the axial force F  the following formula was 
obtained 
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The orientation of the loading trajectory in the 
space of axial zzt  and circumferential ϕϕt  stresses 
we will define by the parameter ζ  
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where h  is the tube wall’s thickness and R  is the 
average radius of the tube. 

In the study [8] it was demonstrated that in 
the case of the axial tension is impossible to carry 
out experiment under a constant state parameter γ . 
Therefore, the solution of the problem of the 
representation of the real material in the structural 
model on the basis of experiments conducted by 
stretching can be achieved only in an approximate 
way. 

In the case of axial tension the circumferential 
stresses are equal to zero 
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for isothermal loading 1=β , then from (10) we 
obtain 
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Taking into consideration that at elεε =  rate of the 
axial normal stress change is directly proportional 
to rate of the axial strain change 
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we can write the expression for determining the 
parameter γ  in this way 
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where in accordance with the results obtained at 
[5,6,7] m  is the interior parameter of the scheme of 
kinematic interaction between subelements and 
depends on the linear hardening coefficient 0a : 
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Figure 1. Diagram of the proportional loading of 
the thin-walled tubes by axial force at constant 

temperature constT =  and constant rate of 
longitudinal strain change constdzz =  

 

Let us rebuild the diagram zzzz dt ~  in the 
space of modules of strain deviators ε~e  (figure 1) 
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Assuming that the volume varies elastically, we find 
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A number of authors [9] found that in the 
strain diagram ε~e  is observed a linear hardening 
sector, the slope of which does not depend on the 
temperature and rate of loading. 

Linear hardening coefficient æ  according to 
the diagram ε~e : 
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or taking into account the relations (19) and (20) 
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Knowing the hardening coefficient æ  in the 
diagram ε~e , we determine the hardening 
coefficient in the diagram pe ~  ( )ep −= ε  within 
sector cppp ≤≤*  (where *p  corresponds to the 
time when all the subelements exceeded the elastic 

limit 1=′ψ , cp  is a measure, starting from which 
the linear isotropic hardening is broken) 
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Within the sector cppp ≤≤*  of the linear 
hardening of body’s element expression (9) acquires 
the forme 

 

p=γ ,                             (24) 
 

or using the relation (21) we obtain 
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Differentiating (19)-(20) with respect to time 
and inserting them into (25) we can express the 
parameter γ  as the function of rate of the gripping 
device movement zzd  
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or introducing (22) the state parameter can be 
represented in this way 
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From (27) follows that within the sector of 
linear hardening the experiment under condition 

constdzz =  corresponds to loading at const=γ . 
This conclusion with a high degree of precision  
remains valid beyond the sector of linear hardening. 

Indeed, for any cεε > in (25) can be accepted 
that ( )εεæ=e , where æ  is expressed as a 
function of ε . Then 

 

( )[ ] εεγ æ−= 1 .                   (28) 
 

Further outside of linear hardening section the 
processes of softening in a material evolve [2], so 
( )εæ  is a decreasing function. For most materials 

within the linear hardening section 210−≈æ . 
Therefore, the quantity ( )εæ  compared with unity 
can be neglected and in this case we may take 

εγ = . Substituting (20) and (22) into (28) 
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hardening section the state parameter γ  with 
precision of the second order is constant. 

Within the sector *εεε <<el  of the diagram 
ε~e  the parameter γ  in tensile tests at a constant 

rate of the gripping device movement constdzz =
undergoes considerable changes. Let us examine 
how the parameter γ  varies from point elεε = , 
corresponding to the value 1γ  (17) at point *εε = , 
corresponding to the value 2γ  (27). 

For this purpose the state parameter γ  will be 
expressed by the Poisson's ratio and linear 
hardening coefficient a , using the relations (18), 
(22) and (23). In this paper we restrict to examine 
the case when the coefficients of linear isotropic 
and kinematic hardening are equal 0aa =  
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Thus, in tensile tests at a constant rate of the 
gripping device movement constdzz =  within the 
sector *εεε <<el  of the diagram ε~e  the 
parameter γ  has decreased 21 γγ  times (figure 2)  
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Figure 2. Parameter variation γ  within the section 

*εεε <<el  for the real values of the parameter а: 
1 – а=0,01; 2 – а=0,02; 3 – а=0,03; 4 – а=0,04; 5 

– а=0,05 
 

According to the figure 2 the state parameter 
γ  within the range *εεε <<el  is decreased 4-9 

times for values of the Poisson's ratio 3,02,0 −=ν . 
Therefore, the variation cannot be neglected. 

Let us study the process of determining of the 
function ( )υγ ,,pee =  on the basis of simple tensile 
tests under different temperatures and different rates 
of the gripping device movement. 

The characteristic values elele ε= , *e , *ε  are 
determined for the each curve ( )εee =  obtained 
under conditions constdzz =  and constT = . As a 
consequence we have the following functions 
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To pass from the rate of the gripping device 
movement zzd  to another argument – the state 
parameter γ , we must solve at constant temperature 
the equation 21 γγ = , which according to (30) and 
(31) can be written as 
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where ν  depends on the loading conditions 
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Figure 3. Determining of the characteristic values 
ele , *e , *ε  at constant magnitude of the state 

parameter γ . 
 
The results of solving this equation give us 

the possibility to find out ( )( )1
zzel de , ( )( )2

* zzde , 
( )( )2

* zzdε  for the same value of the parameter γ  (

21 γγ = ) and constT =  (Figure 3). 
Taking into account that isothermal loading 

corresponds to deformation with const=υ , 
functions (33) are written as 
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We will approximate the nonlinear section of 
curve pe ~  within the limits *0 pp ≤≤  (other way 

** epeelel −≤≤− εε ) using the following function 
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where ele , D , n  at fixed values of the state 
parameters γ  and υ  are constant size. 

The coefficients of the approximation can be 
established by studying the conditions at the 
beginning of the linear hardening sector 
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Solving the system (38)-(39) we express the 
coefficients of approximation ( )υγ ,n  and ( )υγ ,D  
in the characteristic values of diagram obtained on 
the basis of simple tensile tests 
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The accuracy of setting of the characteristic 
curves ( )υγ ,,pee =  will depend on the structure of 
the approximating function (37) and the accuracy of 
choice the characteristic points of the strain diagram 

ele , *e , *ε . 
 
 

CONCLUSIONS 
 

In the study [8] it was demonstrated that in 
the case of the uniaxial tension is impossible to 
carry out experiment under a constant state 
parameter γ . 

Therefore, elaboration of approximate method 
for determining the thermorheological properties of 
subelements on the basis of uniaxial tensile 
diagrams made for thin-walled tubes under different 
constant rates of the gripping device movement and 
temperature levels significantly expands the 
usability of published experimental data. 
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