
6th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, October 1‐3, 2009

 427

Introduction

Cryptography is the art and science of secret writing. The
term is derived from the Greek language

• krytos - secret
• graphos - writing

Encryption is the actual process of applying cryptography.
Much of cryptography is math oriented and uses patterns
and algorithms to encrypt messages, text, words, signals
and other forms of communication.
Cryptography has many uses, especially in the areas of
espionage, intelligence and military operations. Today,
many security systems and companies use cryptography to
transfer information over the Internet or radio for fears of
interception. Some of this encryption is highly advanced,
however even simple encryption techniques can help
uphold the privacy of any everyday person.
The term cryptography also meant the breaking of
encrypted messages until the early 1920s, when the
concept of Cryptanalysis began being used and is now
practically an art and science all on its own.
The two main areas of cryptography are Cipher and Code.

Developing the algorithm

My work course was to develop a program that can
encrypt and decrypt data using keys, to develop such a
program I set some objectives:

• encryption key must be inputed from user, and
should be any combination of characters/symbols.

• For 2 different keys the program must generate 2
different sets of data.

• Data decrypted with a wrong key must not be
similar to data encrypted with correct key.

• The encrypted data must not be analogical to
original data in sense of semantic analysis.

Usually the XOR operation is used to encrypt the data.
This is an extremely insecure algorithm but despite this it
is relatively widely used.
I decided to use a Vigenere type cipher algorithm. It is
often used for low-security applications. The first byte of
the file is encrypted with the first character of the
password, the second byte with the second character, and
so on. If all the characters of the password have been used,
the next byte of the file is encrypted with the first character
again.
To encrypt the byte with the character typically the XOR
operation is used. This operation has the property that if
you apply it twice with the same character, you get the
original byte back. This makes it extremely easy to
implement encryption and decryption.
The Vigenere algorithm is very insecure. Encrypted data
can be easily analyzed semantically.
With many types of files, the first few bytes are always the
same so
that the operating system can tell what type of file it is.
GIF images for
example start with "GIF87" and Word documents start
with "MSW". This is very
convenient for breaking the code, since we know a part of
original data.

Additionally, passwords often consist of letters in all lower
case and so do many files that are encrypted this way
(because they are text documents). This results in patterns
that are easily recognizable in the encrypted file.

So, to add some security to my algorithm, I added bit
shifting to it. A part of encrypted byte will be shifted to
next byte that will be encrypted. Thanks to that, a part of

Development of simple and relatively strong
encryption algorithm using combination of XOR

and bit shifting
Author: Lisnic Andrei, student of Technical University of Moldova, gr. FAF-081

andrei.lisnic@gmail.com

Abstract – this article will describe how to easily develop a efficient encryption algorithm that is obtained by combination
of simple encryption methods. This Combination will protect encrypted data from being analyzed semantically.

6th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, October 1‐3, 2009

 428

all data will be encrypted twice, since it's being shifted
before encryption.
The amount of shifted bits must be dynamic and must be
generated by the key.

So all the algorithm can be summarized to the following 2
steps:

1. Put shifted bits from previous byte
in CurrentByte and shift CurrentByte
and memorize the lost part (it will be
put in the beginning of next byte)
2. CurrentByte XOR (Key[index] OR
KeyChecksum)

At this moment the algorithm is done, next step is
implementation, which is not so difficult.

Algorithm visualization

I will schematically visualize how the chosen encryption
method works on a byte from the original data.

Current
byte

Current
key

Key
Checksum

Lost bits Resulting
byte

Initial data

10011011 1100101 00110010 01000000 none

Stage 1

01100110 1100101 00110010 11000000 none

Stage 2

01100110 1100101 00110010 11000000 10011001

Cryptographic analysis

Here is how encrypted data behave in different situations:
Initial data:

Fig. 1: original data

The following file is the result of encryption of original

data with the key “conference”:

Fig. 2: encrypted data

The following chart represents the relative correlation of
initial data contents:

Fig3: autocorrelation of initial data

You can see that the relative correlation is different in the
encrypted file, which is a very nice result, meaning that we
have different semantical repartition:

6th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, October 1‐3, 2009

 429

Fig. 4: Autocorrelation of encrypted data

Besides autocorrelation, the floating frequency must be
analysed, it represents how diverse the data become after
encryption:

Fig. 5: Floating frequency of initial data

Fig. 6: Floating frequency of encrypted data

At this moment it is clear that the data was not only
ciphered, but also coded, so practically it's impossible to
analyze semantically the encrypted file, because it has
another data frequency.

But besides that, the algorithm must be checked for
behavior with similar keys. Here is the result of decryption
of the encrypted file with wrong key conferencf (1
character difference):

Fig. 7: the file decrypted with similar, but wrong key

Here is the result of similarity analysis:

Fig. 8: Similarity between original file and the one

decrypted with wrong key

Conclusion:
With the difference of only 1 character, the algorithm
generate almost different files, considering the simplicity
of the program, that's a very satisfying result.

