
6th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, October 1-3, 2009

 410

 I. INTRODUCTION. GNU/HURD
GNU/Hurd [1] is a microkernel operating system which,

unfourtunately, has been in a rather experimental position
recently. However, the fact that this operating system is not
yet production ready does not prevent it from hosting
implementations of a number of interesting design ideas
which are meant to solve a wide variety of problems.

As it could be deduced from it's name, GNU/Hurd is a
GNU project, using the GNU utilities. This implies the fact
that a superficial user may not feel any difference in using
these utilities from GNU/Linux or other GNU/* platforms.

A lot of work is being put into Debian GNU/Hurd flavour
of GNU/Hurd now. This project makes the use of
GNU/Hurd possible for users without extraordinary
experience in operating systems. Of course, users are
encouraged to endeavour to study the “hurdish” (of or
pertaining to GNU/Hurd) approach to solving problems, but
it is equally feasible to keep to the GNU/Linux style at the
beginning.

One of the most attractive features of Debian GNU/Hurd
as compared to pure GNU/Hurd (besides the possibility to
use the enormous Debian package database, of which a
large part has already been ported to GNU/Hurd) is the
installation process. One needs to download the K16
installation CDs and go through a series of steps very much
similar to those of installing a BSD or a GNU/Linux
system. Advanced computer users have the possibility to
cross-compile GNU/Hurd to get a better idea of how this
operating system works.

GNU/Hurd runs on top of GNU/Mach microkernel,
which eventually goes back to CMU's (Carnegie Mellon
University) Mach 3.0. One specific trait of this microkernel
is that it incorporates drivers, as different from MINIX3, for
instance.

Going back to GNU/Hurd as a concept, it is essential to

mention that, being a microkernel operating system, it has
the concept of modularity at the foundation. When one
speaks of a “hurdish” approach, ones mainly means
modular approach combined with some specific features,
dwelt on below. GNU/Hurd users are mostly advocates of
modularity and the present article will also often focus on
modularity.

 II. TRANSLATORS
The feature which GNU/Hurd is renowned for is

translators. A translator is a (user-space) server providing
some a part of the POSIX-required functionality, as well as
some specific possibilities. The most important difference
from other microkernel platforms (like MINIX3) is that
these servers are attached to some file system locations, thus
constructing the familiar “everything is a file” UNIX
approach.

Translators are mostly created by compiling against a set
of libraries [3], among which are libtrivfs,
libnetfs, and libdiskfs. These three (most well-
known) libraries define the three general use-cases for
translators. A libtrivfs-based translator has the simplest
use-case: in most cases it operates on the contents of the file
system node it is attached to (the underlying node) by
applying some transformations to it and publishing the
result to the client. A libnetfs-based translator will
publish a virtual file system, consisting of virtual nodes,
managed by the translator itself. The most complicated
(though not most general) use-case pertains to
libdiskfs-based translators: these are meant to operate
on block devices and provide support for different types of
file systems (for example, translator ext2fs which
supports the ext2 filesystem).

There have been attempts to provide translators on other
platforms, but so far GNU/Hurd is the only platform
possessing this feature. GNU/Hurd community has a mildly
approving outlook on these attempts, considering that the

Sergiu IVANOV
Technical University of Moldova

unlimitedscolobb@gmail.com

Abstract – GNU/Hurd is a microkernel operating system with a unique architecture based on translators. A
translator is a (user-space) server which is attached to a file system node, thus complying with the “everything is a
file” concept. Translators can both modify the contents of the node they were set on and publish virtual file systems.
Under normal circumstances, once a translator is mounted on a node, the contents of this node are completely
obscured. The purpose of unionmount project is to allow mounting translators so that the virtual files systems will
be merged with the contents of the underlying node. Also, this project supposes implementation of a set of rules which
will allow for a more complex (merging) functionality.

Index Terms – GNU/Hurd, merging rule, modularity, translator, union mount.

VFS-style Union Mount under GNU/Hurd

SCIENTIFIC ADVISOR: Mihail KULEV, PhD

6th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, October 1-3, 2009

 411

real Hurd will be where the “hurdish” approach will be
implemented best.

 III. UNION MOUNT
A union mount is a mount in which several file systems

(or file system locations) are merged and mounted on a
single node. This concept has originated with Plan 9 and its
concept of union directories and is implemented as the
UnionFS file system for Linux, FreeBSD and NetBSD.

Just as in a large number of similar problems, such
functionality is achieved via translators under GNU/Hurd.
The Hurd Extra repository contains the corresponding
unionfs translator, which not only implements the basic
union mount, but also adds some features, like tracking the
contents of the union-mounted directories and updating the
merged file system.

The purpose of the unionmount project is to
implement a different idea. Under normal circumstances,
once you have mounted something on a file system node,
the contents of that node (be that a directory or a file) are
completely obscured by the mounted file system. However,
there are occassons in which it might prove necessary to
still have access to the underlying file system. This is the
goal of the unionmount project: to mount translators in
such a way, that the contents of the underlying node
(directory) remain in view.

To prevent possible objections to the practical usefulness
of this idea, a short description of a real use-case will be
given next. Suppose you want to merge a real file system
location and a virtual file system published by a translator.
It can be implemented via unionfs by mounting the
translator somewhere and then mounting unionfs on a
different node. Having the possibility to union-mount this
translator directly is a very handy feature, especially if one
takes into consideration the fact that having a translator
publish a virtual file system is a very common task under
GNU/Hurd.

Nevertheless, the feature mentioned above is not the
main one. Union-mounting is not by any means restricted to
be a simple merging operation. Right now the author of this
article is working on ideas of implementation of rules for
merging the filesystems, which will range from deciding
which nodes shall have priority (real ones or the ones
published by the union-mounted translator) to automatically
starting some translators when a node is accessed (thus
mimicking the functionality of passive translators, which
are automatically started by the file system when nodes with
passive translators are accessed).

For advanced technical implementation details (oriented
mainly towards people with GNU/Hurd programming
experience) visit [4].

 REFERENCES

[1] GNU/Hurd official web page http://hurd.gnu.org/
[2] Ivanov S. “Introduction to GNU/Hurd”. October 2008.
[3] Ivanov S. “Namespace-based Translator Selection under

GNU/Hurd”. October 2008.
[4] GNU/Hurd article at Wikipedia

http://en.wikipedia.org/wiki/Hurd#Developme
nt_history

[5] The GNU Hurd Reference Manual
http://www.debian.org/ports/hurd/reference-
manual/hurd.html

[6] bug-hurd Mailing List Archives
http://lists.gnu.org/archive/html/bug-
hurd/2009-04/msg00007.html

