ZrO₂ RADIATION SENSOR

Sergiu T. Shishiyanu¹, Valentin K. Gueorguiev², Teodor S. Shishiyanu¹

¹Department of Microelectronics, Technical University of Moldova, blvd. Stefan cel Mare 168, 2004 Chisinau, Moldova, sergeteo@mail.utm.md ²Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria

Abstract

The effects of γ – irradiation on the physical and electrical properties of ZrO₂ high-k MOS radiation sensors were studied. The doses of γ –irradiation applied have been up to 80 Gray. The C-V characteristics seeing as the flat-band shift when exposed to γ – irradiation showed high sensitivity.

Raman scattering spectra measurements of the undoped ZrO_2 thin films grown by RF magnetron sputtering on silicon substrate have been investigated. The impact of γ – irradiation doses on the ZrO_2 thin films on Raman spectra was analyzed. The intensity of the Raman signal originating from monoclinic ZrO_2 is found to decrease with increasing gamma radiation. We also observed peak shift with the gamma radiation dose.

The fabricated ZrO₂/SiO₂/Si nanostructures response to gamma radiation studied by Raman spectroscopy and C-V flat band shift measurements shown the possible application as the low dose radiation sensors.

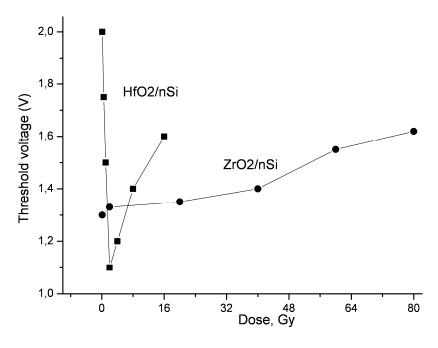


Fig. 1. Radiation dependence of the threshold voltage for ZrO_2/nSi and HfO_2/nSi γ –rays sensors.