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INTRODUCTION

A natural modeling framework for many
complex systems, such as communication or
computer systems and networks, is provided
through discrete event systems and, in particular,
generalized stochastic Petri nets (GSPN) models
[3]. However, factors such as huge traffic volumes,
increasingly = complex operating rules, and
performance requirements make such models highly
impractical. From an analytical standpoint,
traditional models from classical queuing theory fail
to capture new features such as complicated traffic
source behavior or blocking phenomena. An
alternative modeling paradigm for the purpose of
analysis and simulation is based on Stochastic Fluid
Models (SFM). The SFM paradigm allows the
aggregation of multiple events into a single event
associated with a “significant change” in the system
dynamics.

Among the formalisms of SFM that are used,
the fluid stochastic Petri nets (FSPN) [9] and hybrid
stochastic Petri nets (HSPN) [1, 8] are popular. To
make design issues and analysis procedures more
transparent with negative-continuous values, we
tried to deviate as little as possible from the
concepts and the nets of F'SPN and HSPN. Thus, we
propose our extension of differential Petri nets
(GDPN) [5], which we call Generalized Differential
Stochastic Petri Net (GDSPN), and that is able to
represent the behavior of computing processes in a
common model. The features of GDSPN accept the
negative-continuous place capacity, negative real
values for continuous place marking and token-
dependent arc cardinalities that permit to generalize
the concept of GDPN, FSPN and HSPN.

1. GENERALIZED DIFFERENTIAL
STOCHASTIC PETRI NETS

The problem of state space explosion has
challenged numerical solution of Markovian models
for a generation. In this paper we propose a means
of avoiding this problem for large scale models of

repeated components, represented in GSPN. By
adopting a continuous approximation of the model
behavior we are able to analyze systems of
arbitrarily large scale. However, work is
progressing on relaxing these assumptions.

Let /N, and [R be the sets of discrete natural

and real numbers, respectively.

Definition 1. A Generalized differential Petri
net (GDPN) is a 10-tuple HI'=<P, T, Pre, Post,
Test, Inh, K, , K, G, Pri >, where:

¢ P is the finite set of places partitioned into a
set of discrete places P, ={p,---,p, }, n, = P,
and a set of continuous places P, ={b, b, },
n,=|P|, P=P,UP. , P,NP =C. The discrete
places may contain a natural number of tokens,
while the marking of a continuous place is a real
number (fluid level). In the graphical
representation, a discrete place is drawn as a single
circle while a continuous place is drawn with two
concentric circles;

e T is a finite set of transitions, that can be
partitioned into a set 7, ={f,---,t, },k, = T,| of

discrete transitions and a set T ={u,---,u, },
k.= T.| of continuous transitions, 7' =7, UT,
T,NT,=Q. A transition ¢, €T, is drawn as a

black bar; a continuous transition y, e 7,is drawn

as an empty rectangle.

e Pre, Test and [nh:PxT — Bag(P)
respectively, are forward flow, test and inhibition
functions. Bag(P) are discrete or real-valued
multisets functions over P. The backward flow
function in the multisets of P

is Post:T x P — Bag(P). These functions define
the set of arcs A4 and describe the marking-
dependent cardinality of arcs connecting transitions
with places and vice-versa. Also, the 4 set is
partitioned into subsets:
A=Aa 0 A0 Ap O AU As,
AaN Ae\ A A A=D .
The subset 4, and 4, contains respectively
the discrete normal and continuous normal set
arcs which can be seen as a function:
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Aa: (P, xT, )V (T, x P,)))x Bag(P)— IN,, and
As((P.xT,))u(T, xP))xBag(P)—> IR.

The arcs of 4, and 4, are drawn as single arrows.
The subset of inhibitory and test arcs is 4,
A (PxT)x Bag(P) — IN, or that of continuous

inhibitory and test arcs is A,
A (P.xT)x Bag(P) —> IR.
directed from a place to any kind to a transition of
any kind. The inhibitory arcs are drawn with a
small circle at the end and fest arcs are drawn as
dotted single arrows. It does not consume the
content of the source place. The subset 4. defines
the continuous flow arcs A
((P.xT.)U(T.xP. ))xBag(P)— IR, and these

arcs are drawn as double arrows to suggest a pipe.
The arc of a net is drawn if the cardinality is not
zero and it is labeled to the arc with a default value
being 1;

* K,:P, > IN, U {oo} is the capacity-function

These arcs are

of discrete places and for each p, € P, this is

represented by the maximum capacity K",

0<K;‘a" <400, which can contain an natural

number of tokens. By default, the K™ — + 0,

and it has no blocking effect;
e K, :P. >IRU {0} is the capacity-function

of continuous places and for each b, eP.it

n

describes the fluid lower bounds x;" ™ and upper

max

bounds X; of the

1

fluid, so  that
—00 < x™" < x™ < 4oo. By default, x™ = 0 and
x™ — +00, and it has no blocking effect;

e G:TxBag(P)— {true, false} is the guard
function defined for each transition. For te T a guard
function g(z,M) will be evaluated in each marking
M, and if it evaluates to true, the transition may be
enabled, otherwise ¢ is disabled (by default it is
true);

e Pri:TxBag(P)— IN, defines the priority
functions for the firing of each transition. By default

it is 0. The enabling of a transition with higher
priority disables all the lower priority transitions. B

The structure of a GDPN is static. The
dynamics of a net structure is specified by defining
its initial marking and its marking evolution rule.

Definition 2. A system stochastic timed marked
GDPN net (GDSPN) is a pair NH = <N, My >,
where = <HI', A, W, V > is a system timed
stochastic timed GDPN structure (see Definition 1)

with the respective attributes of timed transitions
and 9, is the initial marking of the net so that:

e The set of discrete transitions Tdalso 1S
T,=T,UT.,
I,NT = so that: T, is a set of immediate

partitioned into two  subsets

discrete transitions and TT is a set of timed discrete
that, Vl‘j el,andVt, €T,

Pri(t;)>Pri(t,). The immediate transitions are

transitions, SO

drawn as a black thin bar and timed transitions are
drawn as a black rectangle;

e The current marking (state) value of a net
depends on the kind of place, and it is described by
a pair of vector-columns M=(m, x), where m:

P,—IN, and x: P.— IR are the marking
functions of respective type of places. The discrete
marking m =(m,p,, m;>0,V p, € P,) with m,p,
describe the number m, = m(p,)of tokens in
discrete place p,, and it is represented by black
dots. The continuous marking X
=(xb,, "™ <x, <x™, Vb, €P) with x.b,

describe the fluid level X, = x(b, ) in continuous

place b, and it is a real number, also allowed to

take negative real value. The initial marking of net
is My = (my, xo). Vectors my, and x, give the initial
marking of discrete places and of continuous places,
respectively;

e A:T. xBag(P)— IR, is the rate function
that maps timed discrete transition onto real
nonnegative numbers [R,. It can be marking
dependent. The firing rate A ; (M) define  the
parameter of negative exponential distribution
governing it firing duration for each timed discrete
transition of ¢, €7 .

e W:T,xBag(P)—IR, is the weight
function of immediate discrete transitions?, € 7,

and this type of transitions is drawn with a black
thin bar and has a zero constant firing time.

o V:T.xBag(P)— IR is the marking
dependent fluid rate function of timed continuous
transitions u, € T,. If u; is enabled in tangible
marking M it fires with rate V) (M), so that it

continuously changes the fluid level of continuous
placeb, € P.. u
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The role of the previous set of arcs and
functions will be clarified by providing the enabling
and firing rules. Let us denote by m; the i-th
component of the vector m, i.e., the number of
tokens in discrete place p; when the marking is m,
(and x; denote the k-th component of the vector x,
i.e. the fluid level in continuous place py).

Figure 1 summarizes the graphical represent-
tation of all the AH primitives.

Discrete primitives
Timed Normal arc
O Place transition R
. Test arc
e Immediate -
o Tokens transition

Inhibitor arc
—=0

Continuous primitives

Fluid arc
3

Inhibitor arc
———————————

Timed
transition

Test arc

Setting arc

Figure 1. Graphical representation
of all the A primitives.

Let T(M) be the set of enabled transitions in
current marking M . We say that a discrete
transition t, € T,( M) is enabled in current marking

M if the following logic expression (enabling
condition ec, (¢,) ) is verified:

ec,(1,)=(_ A, (m, > Pre(p,.1) &

(A (m, <Inh(p,,t,))&

Vpre't;
(A (m 2Test(p,,t)) &

Vpie tj

(A (K, —m,)=Post(p,.t,) & (_A (x,>Pre
Vp, et} Vbie't;
(b,1,) & (kaAentj(xk < Inh(b,,,)) &

(A (x, 2Test(b,,t,) &
Vb e t

J

(LA (K, =x,)= Post(x,.t,)) & g(t,, M).

Vb, et

n=tj

The transition t,eT, (M) fires if no other
transition ¢, e T, (M) with higher priority is enabled.
If an immediate discrete transition is enabled in
current marking M = (m, x), it is vanishing.
Otherwise, the marking is tangible and any timed
discrete transition is enabled in it [3, 5]. If several
enabled immediate discrete transition 7, € 7; (M)

for ¢,€°p, are scheduled to fires at the same time in

vanishing marking M, with the respective weight
speeds, w; (M), the q; (M= w; (M)

Zt,e(TO(M)&'p,)w(tl’ M ) is the probability that
enabled immediate transition 7, € T}, can fires.

Also, we say that a continuous transition
u,eT (M) is enabled and continuously fires in

current marking M if the following logic expression
(the enabling condition ec, (u)) ) is verified:

ec.)=( A, x5 >00& (A (m <

Inh(py,u;)) & (A (m; 2Test(p,,u,)) &

Vp,€ u;

(ka/e\u/(xk <Inh(b,u;)) & g(t;, M) &
( A (x ZTest(b,,uj))&
Vb€ u;
( A (K, —xn)ZV/.-Post(xn,uj)),
h,eu! n :

and no transition with higher priority is enabled.
An immediate discrete transition ¢, enabled in

marking M = (m, x) yields a new vanishing marking
M’= (m’, x). We can write (m, x) [t,>(m’, x). If the
marking M = (m, x) is tangible, fluid could
continuously flow through the flow arcs 4. of
enabled continuous transitions into or out of fluid
places. As a consequence, a transition ¢. is enabled
at M if for every be'u, x(b)>0, and its enabling
degree is: enab(u, M )=min, . {x(b)/Pre(u, b)}.

Upon firing, the discrete (continuous) transi-
tion removes a specified number (quantity) of
tokens (fluid) for each discrete (fluid) input place,
and deposits a specified number (quantity) of tokens
(fluid) for each discrete (fluid) output place. The
levels of fluid places can change the
enabling/disabling of transitions.

We allow the firing rates and the enabling
functions of the timed discrete transitions, the firing
speeds and enabling functions of the timed
continuous transitions, and arc cardinalities to be
dependent on the current state of the AH, as defined
by the current marking M.

4. DYNAMIC REWRITING GDSPN

In this section we introduce the model of
descriptive dynamic net rewriting systems.
Let X pY be a binary relation. The domain of p

is the Dom( p ) = pY and the codomain of p 1is the
Cod(p)=Xp . Also, let A= < Pre, Post, Test, Inh >
be a set of arcs belonging to net N N = <HI,
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N, W, V>, HI = <P, T, Pre, Post, Test, Inh, K,,
K,, G, Pri > (see Definition 2).

Definition 3: A dynamic rewriting GDPN 1is a
system RH =< N, R, ¢, G., M >, where:

o N=<HI, A, W,V>and R={r,...,1,}
is a finite set of discrete rewriting rules (DR) about
the run-time structural modification of a net, so that
PNTNR=. In the graphical representation, the
DR rule is drawn as two embedded empty
rectangles;

o ¢:E—>{T,,R}is
indicates for every rewriting rule the type of event
that can occur and E =T, U Rdenote the set of
events of the net;

e G:ExBag(P)— {true, false} 1is the
event rule guard function associated with ecE,
and G, : RxBag (P) — {true, false} is the rewriting
rule guard function defined for each rule of re R,
respectively. ForVe e E, the function g,(M)eG

a function which

and g.(M)eG. will be evaluated in each marking

and if they are evaluated to true, the event e may be
enabled, otherwise it is disabled. The default value
of g,(M)eG and g (M)eG,is true in current

marking M .
Let RN=<RH, M> be represented by the

descriptive expression DEgr and DEgy, respectively
[8]. A dynamic rewriting structure modifying rule
reR of RN is a mapr:DE, >DE, , where the
codomain of the > rewriting operator is a fixed
descriptive expression DE, of a subnet RN, of
current net RN, where RN, cRN with P, c P,
E, c Eand the set of arcs 4, < 4, and the domain
of the I> is a descriptive expression DEg, of a new

RNy, subnet withP, c P, E, c E and set of arcs

Ay . The

binary operation which produces a structure change
in the DEgy and the net RN by replacing (rewriting)
the fixed current DE, of the subnet Rw,

( pE, and RN, are dissolved) with the new DE, of

rewriting operator > represents the

the subnet RN, , now belonging to the new
modified resulting DE,,. of  the net
RN'=(RN\RN,)URN,  with P'=(P\P,)UP,,
E'=(E\E,)UE, , and the set of 4'=(4\4,)u 4,
where the meaning of \ (andu) is operation of
removing (adding) RN, from (RN, to) the net RN.

In this new net RN’, obtained by execution (firing)
of enabled rewriting ruler € R, the places and
events with the same attributes which belong to

RN'are fused. By default, the rewriting rules
r:DE, >@ or r:@w>DE, describe the rewriting
rule holding the RN'=(RN\RN,) or
RN'=(RNURN,, ).

A state configuration of a net RN is a pair
(RT,s ), where RI is the current structure of net ry

together with a current state s=(M, p(M)). The
(RT,,s,) with B cP,E,c E and state s, is

called the initial state configuration of a net RV. B
Figure 2 summarizes the graphical represent-
tation of RH discrete rewriting primitives.

Discrete rewriting primitives
Timed Normal arc
O e transition D
%+ Tokens Immediate e . -
tr.ansmon Inhibitor arc
Timed : )
rewriting
rule
Immediate
rewriting
rule

Figure 2. Discrete rewriting primitives of RH.

Enabling and Firing of Events. The enabling of

events depends on the of the event e; is enabled in

current marking M if marking of all places. We say
that a transition ¢, €7, the enabling condition

ec,(t;, M) 1s described in [7] and is verified.

The discrete rewriting ruler; € R, that changes
the structure of RJ, is enabled in current marking M
if the ec,(e,) andthe g (r,,M)) are verified.

Let 7,(M) and R(M), T,(M)NR(M)=J, be
the sets of enabled discrete transitions and enabled
rewriting rule in current marking M, respectively.
We denote the set of enabled events in a current
marking M by E(M)=T,(M)UR(M).

The event e, e E(M)fires if no other event
e, € E(M)with higher priority is enabled. Hence, for
cach e, if ((¢,=t,)v(#,=7, ) A(g.(e;,M) = False))
then the firing of transition ¢, e T,,(M) or rewriting
rule r, € R(M) changes only the current marking:
(R, s)—2%—>(RI,s'") © (R =RI and inRr

the M[e,>M"). Also, for e, event if

(¢, =1, )A(g,(r;,M)=True)) then the event e occurs
to firing of rewriting rule , and it changes the

configuration and marking of the current net in the
following way:
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(RT, 5)—>(RT",s'), M[r; > M".

The  accessible state graph of a
RN=<RI,M > net is the labeled directed graph
whose nodes are the states and whose arcs which
are labeled with events or rewriting rules of RN are
of two kinds:

a) firing of an enabled e, € E(M) event
determines an arc from the state (RT,s) to the state
(Rr,s") which is labeled with event e; when this
event can fire in the net configuration rr at
marking M and leads to a new state:

s': (RI[,s)—L—(RI,s") <
(RC=RI™" and M[e, >M' in RI);

b) change configuration: arcs from state
(RI,s) to state (RI',s") labelled with the rewriting
rule r,eRr, so that r;:(R[,M,)>(R[,,M,)

which represent the change configuration of current
RN net: (RI", s)—2—(RI"", s") with M[r, > M".

3. ANALYTICAL DESCRIPTION
OF SGDPN MODELS

For the analysis of an SGDPN the underlying
stochastic process must be defined. The node of the
discrete part reachability graph consists of all
discrete markings supplemented by vector of
random variable for the fluid levels. It gives rise to
a stochastic process, which is a Markov process in
continuous time with mixed state space [4, 6]. The
bounded, live and reversible GSDPN are isomor-
phic to continuous-time hybrid Markov chains
(CHMC) due to the memory less property of
exponential distribution.

We denote the set of all markings (or the
partially discrete and partially continuous state

space) of the net by S=IN‘+P‘"><IR‘P“. In the

following we denote by S, and S, the discrete and
the continuous component of the state space,
respectively, so that =S, LS., S, NS, =.

The current marking M = (m, x) of NVH evolves
in time. We denote the time byz, and M (7 ) the
current marking at time 7 of the marking process
S(t)={m(7), x(7), >0} of N net.

In the NV#, the instantaneous fluid speed
(dynamic balance) v, , (M) that change of fluid
level in continuous place b, € P, in current marking

M =( my, x), meS,, xS, is given by: U, 1 (M)

=0/, (M) - U (M), i=1,n,, n =P, |, where for

any given u,,u, €T (M), thev, (M) is an input
instantaneous fluid speed of continuous place
b, € P, and v, (M) is an output instantaneous fluid
speed of this place:

v (M) = zuk b [V, (M)- Pre(u,,b,) ],

v, )= [V, (90 Post(u,,b)].

Live and bounded HSPN are isomorphic to
continuous-time hybrid Markov chain (CHMC) due
to the memory less properly of exponential
distribution [3].

Let S, be the discrete set of state space of
CHMC and let D( x)=[d, ;(x)], i,j=0,..,[ S|

be the dynamic matrix of transition rates derived
from the rate function of discrete transitions of
discrete part GDSPN [1, 8].

The dynamic balances v, (M) that changes
levels for each continuous place b, in discrete
marking m;<€ S, are collected in the diagonal
matrice:

v (x)=diag(L,((x),..., U (X)),
n. = F|.
The 3-tuple (m(7 ), x(7 );u,(x )) describes the

state of CHMC chain. The transient probability of
being in discrete state my; with fluid levels in an

for all

continuous places b, € P, are called the fluid

i=1,..,

infinitesimal environment around Xx;,

density probability and are denoted by f, (x,7).
Let x™="h,and x™ ="h . Letalso p; ( x,7)or
P, ( x,7) be a probability mass if x(7 ) has at least
one component equal to x,=h or x,=h

respectively.
Using the approach described in [8, 9] we have

derived the Chapman-Kolmogorov  forward
equations that are in the following:
e for internal fluid levels  values

vV h <xl.<+h of be P :

0 < 0
Efk(x,rw;g(fk(x,r) 0, (x)=

i
1S4

D d (x,7) fi( x7)), (1)
=0

k=0,.,N,, N,=|S,].

For the boundary conditions two different cases
arise, depending on the direction of the fluid flow:
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e for the lower boundary fluid levels values
x,=h of beP.:
P (x,7)=0 if (x; ="h ) A (-0, (x)>0), and

L pr(xey S (et ) |ou(x)

a Viix;="h;

+ Z (a—fk(xf) (%)) =
IS4]

D> (dy (x.7) A (X)) E (5 =h ) A

(0,(x)<0), Vb, e P,V meS,; (2
e for the upper boundary fluid levels values
x,="h of b e P.: p/(x,7)=0if
(x,="h ) A(-0,,(x)<0), and 3)

9 () D (fi(x7) 0,(x)

or Viix;="h;

+ Y —(fk(x,r)~u,-,k(x,r))=
Vk: hy<x;<'h; axi
15,

Dd,(x7)p/(x7), if
1=0

(x;="h )~ (v, (x)>0), Vb, e P,V me S,
Assuming the system converges to a stationary

solution of equations (1), (2) and (3), the stationary
fluid density function and fluid mass function exists

J(x )=lim £, (x,7), p,(x )=limp, (x,7) and
P (x)=lim p, (x,7) only if the system is stable.

Stability conditions of GDSPN are still a research
topic.

For these equation systems the steady-state
distribution exists when the underlying of GDSPN
discrete part is bounded, life, reinitialized and the
following relations are verified:

v}}rg ”;Sgﬂk(x) 0, (x))<0, Vb, e P, (4)

where 7,(x) is the stationary probability of

discrete marking m;e S y determined by the

underlying continuous-time Markov chain (CTMC)
of GDSPN discrete part [4, 10]. These relations are
obtained by solving the following linear system
equations that describe the behavior of CTMC:

el )

Vm,eS,

7(x)- D(x)=0,

Over the &, < xl.<+h internal fluid levels

value intervals the stationary distribution of f,( x),

k=0,.,N,, N, =
n, 1Sy
Z—(fk(x) (X)) Z(%(x) £ ),
Ox
i=1 i
V h <x<h. (6)

For the boundary conditions, depending on the
direction of the fluid flow [3, 6]:
. for the lower boundary fluid levels values

X, =h,of beP:
Pr (X)=0 if (x,="h ) A (-0, (x)>0), and
D (filxt) o (0 + D) (a—fk(x)

Viix;=h; Vkix;>h; [
14!

w(x D=2 (@d (0 p (0. (D
1=0
if (x;="h)A(v(x)<0), Vb, eP.,V me S,
e for the upper boundary fluid levels values
x,="h ofb eP:
o, (x)=0 if (x,="h)) /\(Ul.k(x)<0) and

D (filxwt) v (x N+ D (—fk(x>

Vi, ="h; Viix; > h;
0 (x)+ Z a_(fk(x) 0, x)=
i hy<x; <'h; X
IS4
(d, (%) - pi(x)), ®)
1=0

if (¢, ="h )ACV (x)>0), Vb, P,V meS§,

The GDSPN model solution problem is in
general not analytically tractable. The numerical
solution algorithms proposed in [2, 6, 9] are appli-
cable only when the interactions between the
discrete and continuous portions of the net satisfy
fairly strong assumptions.

To obtain the steady-state solution of the
dynamics for the stationary fluid mass probability:

P(x) = (P (X)+ pi () + [ £ ().
Vm, €8,

with Idx = I ...J.dxl...dxnt

“h “hy,  Th
of the GDSPN model has been computed by using
an extension of the finite difference solution
technique proposed in [6, 9], which confirms to the
boundary conditions and satisfies the normalization
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condition at the same time. These are quite complex
and hard to solve.

Hence, discrete-event simulation becomes an
important alternative avenue to study the behavior
and the solution of GDSPNs models under some
restrictions. However, due to the mixed nature of
the state space, with discrete and continuous
components and arbitrary interactions between
them, simulation also poses several challenges that
we address. In [3] are characterized the types of
these interactions as belonging to one of the several
restricted classes of models and are proposed a
better suited, and faster, simulation algorithms can
be employed for the solution and to predict the
behavior.

Thus, for visual simulation and analysis of
GDSPNs we have elaborated the VHPNtool [7].

Continuous performance measures can be
classified as fluid state measures and flow
measures. Fluid state measures give the probability
of a condition connected to the fluid levels in the
net, while flow measures can be considered as the
continuous counterpart of discrete throughput
measures.

In order to show the applicability of GDSPNs we
consider a pipe-line hybrid computing system
consisting of three processing elements PE;, j=1,2,3
(see figure 3). Each element PE; can be in two local
states a, € {0, 1}. In the active state a, =1, the

element PE; with speed V; will, in continuous mode,
decrease the level x; of buffer by, k= 4-j and in the
same time it will in continuous mode increase the
level x; of buffer b;, j=1, 2, 3. In the passive
stater; =0 it will not change them anymore. The

time sojourn of each element PE; in the states
a,=1 or qg,=0 are negative exponentially

distributed random variables with rates 4, 0r 4, .

Figure 3. Translation of DE,, in NH,y;.

The blocking effect of PE;
represented by capacity k, = p of buffer b; if this is

in a, =1 is

full. Further, we will note x,;=x, x,=y and x;=z. The
net NH,,, has four P-invariants that cover all places:
m(p;) + m(p;+3)=1, j=1,2,3 for discrete places and x
+ y + z = h for continuous places. For the initial
marking m(p;)=1, xo=y0=0, zo= hs=hi+h, and the

current state of NHI can be described by 7-tuple

(0!10!20!3,xy;BX,B,,)’ where g and p, are

respectively dynamic balances of buffers b, and b,.
The analytical analysis of underlying hybrid
continuous time Markov Chain HMC of this NH,,
model in general case is very difficult. For this
analysis is necessary to use the special tool.
Here we give a simplified case for 4, =4 =0,

where the elements PE, and PE; always will be in
active state ¢, =, =1 and in this way, the element

PE; (respective PE;) with the speed V, (respective
V’5), will transfer the content of buffer b, (respective
b,) in buffer b, (respective b;).

The behavior of NH,, depends on the ratio
between speeds V. For V; > V, > V3 the chain
HMC1, with the respective internal and boundary
states, in considerate case, is represented in figure 5,
where the discrete marking is m, € {0, 1} because the

element PE; can be or in passive or in active state.

~

[ A
0, xh;; 71, xh; oA
A )\ v ) V,V,

W V.V, ViV,
0 0y V, 0, xy; I xy; 1, h,h;
0V, Vo ViV, ,1, Yol
/1‘;\\ V-V, V:-V;/
0 00; T Ty N\
V? Vi-Vy,0 1%
V>V>V, o= V’

Figure 5. HMC1 of NHj,.

Let fi(x, y) denote the steady-state fluid density of
CHMCI in current marking (m;, xy), i=0,1. For each
internal state (m;, xy; vy, vy), 0<x<h; and 0<y<h, of
the chain CHMCI the fi(x, y) obeys the following
system of partial differential equations (PDE):

-V, ~M+(V2 _V3).M+
Ox oy
o (x,9) = A fo(x, ) 9)

W -7,)- a/‘1( ,y) (VZ—V3)~af“éx’y)+
y
ﬂ’l.fl (x, ) = w4, fo (x,9) -

To write the boundary equation directly
from graph of chain HMCI we introduce the
notation: z,(0) or r,(k), which are the probabilities
of boundary states of buffer b, for x=0 or x=h,, but
00) or Q(hy) of buffer b, for y=0 or y=h,,
respectively.

For each state with o =V, /V, we can write
the steady-state probabilities from the boundary
equations: ol - () =V, -p,(h);

k-7, (h) =, =V5)- ¢ ()
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ol -Q () =V, =V3)-¢i(hy);
7o (0) =V, =V,) - 9,(0);
- Qo (0)=V; -y, (0);
- Q5 (0) -y, (hy) = V5 - 9, (0)Qy (hy).

Solutions of these equation systems permit
us to determine the distribution of steady-state
probability and the performance indicators of
system, i.e. the average levels Xxand jin

buffers b, and b, are:
)?=C'[(V3hu/# A+ +a)(yh _1)/b1 +

+(U+a)/yl b =yle”

¥ =C (V= V) (Vs =V + (Vs =Vy)ay | uds) + D],
where: D = (1+a,)(7,h, =)/73)e"" +(+a,)] 73 »

a, = Afay 5 =6, [V, =2, /0, =Vy),

O =m/[Vs =4IV, =V), a, = Va/(Vz -7,

y2 = A+ 7V, =2,)|(V, =73).
The value of C is a constant obtained from the
normalization condition, but » and A4 are
obtained like solution of following character-
ristic equation of system PDE :

A*+b-A-p=0, where p=24,/p,, and

b=1+V,/V, = (p(2V, =1,V -1))-

From this characteristic equation and
from the normalization condition, that density
probability always is a positive value, we
obtain the solution, 4>0.

The time redundancy is: 7 =%/V, and

t,=y/V,. The same considerations hold for

system throughput.

4. CONCLUSIONS

In this paper we propose the generalized
differential stochastic Petri nets (GDSPN) for
performance modeling of discrete-continuous
computing processes. The features of GDSPN
accept the negative-continuous place capacity,
negative real values for continuous place marking
and marked-dependent arc cardinalities. With our
approach, the modeling power of fluid models is
extended to include the case with fluid-dependent
rates. Also, we provide the set of partial differential
equations and boundary conditions that determines
the stationary behavior and we discuss potential
numerical methods that evaluate the stationary
distribution based on this description.
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