
20-21 October, 2022

Chisinau, Republic of Moldova IC ECCO-2022
The 12th International Conference on

Electronics, Communications and Computing

https://doi.org/10.52326/ic-ecco.2022/CS.10

194

Reduction programming in a technological

programming environment

Igor Redko
1
, ORCID: 0000-0002-3121-1412,

Petro Yahanov
1
, ORCID: 0000-0001-7358-9846,

Maksym Zylevich
1
, ORCID: 0000-0003-1646-0557

1
Faculty of Electronics, dept. Chair of Electronic Computing Equipment in National Technical University of Ukraine

«Igor Sikorsky Kiev Polytechnic Institute» Kyiv,Ukraine, zila@meta.ua

Abstract— This work is aimed at demonstrating, on a

representative sample, the usefulness of programming

concepts in the state of semantic patterns as relations in a

program chain that specify particular types of programs.

This is achieved via the use of program descriptors, which

act as means of translating composites and basic functions

of the technological programming system into their

syntactic declarations at the last step of technological

programming..

Keywords— concept; concept; monad; composite;

composition; programming environment; essential relation;

programming system; reduction; descriptor.

I. INTRODUCTION

According to the traditional individual-subjective

paradigm, the understanding of programming comes from

the fact that its consequence is dominant, which is most

often interpreted as a text in one or another programming

language. Programming itself was considered as a tool to

achieve the goal. In such a paradigm, programming

activity is maximally subjectivized and relies on the skills

and abilities of the coder, who notates the software

solution into code using programming languages. That is,

the programming language acts only as a means of

notation of the consequence of programming. Thus, there

is no real support for the genesis of programs. Among all

the known reasons for such a situation, in our opinion, the

main one is an overly simplified understanding of

programming that does not meet modern requirements.

Therefore, productive modernization of the understanding

of programming is a necessary condition for real support

of programming. In [1] it is justified that taking into

account the active role of the subject (ARS) in such

modernization is essential. The following principle plays a

key role in this: programming is an activity determined by

a program and aimed at creating a program.

Although this understanding of programming differs

from the traditional one in its focus on complementing the

programming process and its result. It is still too

amorphous and therefore needs further productive

enrichment. Extending the understanding of the term

"program" is key here. The proposed intersubjective

paradigm (the name comes from the concept of

intersubjectivity, introduced and developed in [2]) is based

on the interpretation of the term "program" as a likeness

(an outline, as a result of assimilation) of an essential

feature. In [3-5] it is substantiated that such an

interpretation firstly fully corresponds to the modern

pragmatics of programming and secondly it allows further

productive enrichment of programming. Directly

programming is understood as a complement of two

objectively irreducible to each other's modal and real

(actual) types of abstractions - the essence - that which can

be the subject of consideration, and the entity- the object

of consideration, in the sense that the essence is an entity

that is (available as a subject of consideration). In this

way, we get a productive enrichment of the original

premise: programming is an activity conditioned by

program similarity (PS). Here, PS is a productive

enrichment of essential simile (ES) determined by the

program and aimed at creating a program [1, 6]. The

content of the PS in the first approximation consists of the

mutual complementation of the essence and the entity,

oriented towards the creation of the program as a

semblance of the essence. The latter, given the mentioned

objective irreducibility of these types of abstraction,

requires the involvement of the subject in this process,

taking into account (objectification) his active role in it.

From the above, it follows the importance and necessity of

developing an intersubjective understanding of

programming, as it is the key to the real technologization

of programming.

The practice of programming testifies to the

dominance of the "divide and rule" paradigm when

https://doi.org/10.52326/ic-ecco.2022/CS.10

20-21 October, 2022

Chisinau, Republic of Moldova IC ECCO-2022
The 12th International Conference on

Electronics, Communications and Computing

195

solving problems. The main technique here is the

reduction of the holistic understanding which comes down

to a general methodical technique - reduction of the

complex to the simpler [6]. Therefore, the role of

productive reduction mechanisms is essential for the

technologization of programming. In [1, 6-8] it is

substantiated that the basis of such enrichments is the

concept-program active-passive complementarity. Thus,

we come to the following explanatory enrichment of the

program simile:

concept = essense that determines the entity

monad = entity that conditioned by the concept

Works [8-11] show that the conceptual programming

platform provides a real objectification of the main factor

of productive technologization - the active role of the

programming subject. The productive enrichment of

software assimilation as a special type of active-passive

cause-and-effect relationship and its relativization is

carried out quite naturally - the main factor of productive

technologization. Accordingly, the technological

programming environment (TPE) should naturally be

considered as a productive intersubjective enrichment of

the mentioned conceptual programming platform of

programming analogies to the active-passive

complementarity of two objectively irreducible types of

abstraction: the closed oracle logic - the integral core of

the programming environment and the open diversity of

its productive software analogies - technological

programming systems (TPS). Any TPS is a consequence

of software relativization and a carrier of productive

understanding of reduction. This ensures that the active

role of the programming subject is taken into account.

 The necessity of technological activity, modernization

of methods, and its implementation are directly

determined by the level of need to objectify the subject's

participation in it. In the field of programming, this is

manifested in the growth of requirements for software

products and the awareness that the main properties of the

latter are formed at the stage of their genesis and as a

result are determined by the active role of the subject in it

[11].

The defining principles of understanding programming

technology are formed based on the principles of

conditioning, subordination, and separability [4, 5]. The

properties and aspects of programs in their

complementarity follow from the specified principles.

This determines the point of view of what productive

programming technology (PT) should look like so that its

product meets these basic requirements. In particular,

these principles at a general level clearly outline the place

and role of productive programming in programming

technology. To a first approximation, this can be

expressed by the following diagram at Fig.1:

Figure 1. Block diagram of the productive programming technology.

 The world practice of programming confirms the fact

that despite the constantly growing number of problems

and methods of their solution, all of them are subject to

the "divide and conquer" paradigm, the main technique of

which is reduction - reducing the complex to simpler [6].

Therefore, the role of reduction mechanisms is essential

for the technologization of programming. The value of the

above is determined by the fact that without an

understanding of programming technology, programming

technology is impossible.

In [6, 7], the solution to any programming problem is

presented as a sequence of performing the stages of

productive conceptualization, oracle schematization,

composite-composite relativization, and reduction

conceptualization. The meaningful essence of this

sequence consists of the step-by-step productive

enrichment of the solved problem within the framework of

intersubjective TPE. The process starts from the subject's

general ideas about the problem and ways of solving it

and up to its final solution in the TPS- subject-oriented

productive enrichment of the TPE. At the same time, the

correctness of the solution follows directly from its

construction. Many works are devoted to clarifying the

content of TPE, the procedure for its creation, and

individual steps (for example [1, 5, 6, 7] and their

bibliography). Therefore (guided by the principle of

reasonable sufficiency) let's allow ourselves a somewhat

simplified, thesis to dwell on the construction of TPE and

pay more attention to its use for solving problems.

Thus the subject of this work is the TPE mentioned

above, its object is programming technology, and the goal

is a technological programming system (TPS) based on

TPE as a platform for productive programming and its

application for problem-solving.

II. REDUCTION OF PROGRAMMING OF TASKS IN A

TECHNOLOGICAL PROGRAMMING ENVIRONMENT

It follows from the above that TPS as a subject-

oriented closure of TPE is a real subject-oriented

programming platform. The closure is a definition of

composites as programming concepts, basic object

operations, and composite-composite interfaces. In this

way, we will build an arithmetic TPS based on the results

of compositional programming and studies of the class of

computational arithmetic functions and predicates [12,

13]. As a programming platform, we will use composite

programming and a nominal model of data, functions, and

20-21 October, 2022

Chisinau, Republic of Moldova IC ECCO-2022
The 12th International Conference on

Electronics, Communications and Computing

196

operations, as composites - multiplication operations º,

branching IF, cycling WD and the simplest compositions

derived from them (in the sense of application operations

Ap and n-ary superposition
Nn

nS

|), which specify the

most used methods of synthesis of some programs from

others [14-16], and as basic subject operations –

arithmetic operations +,–, 0; logical operations ∨,∧,!, T,

F; relation =,<,>. Parametric operations on nominal data

will also be neede
()

: () {(,)},|
aєN

A A a A a

()
: () {(,)},|

aєN
A A a A a as naming and denaming,

respectively and opening and closing parentheses.

 In the following, data, functions and operations,

unless otherwise specified, mean named data, named

functions and named operations, respectively. As for the

composite-composite interface, will use the apparatus of

serial or, determined by the mentioned composites º -

branched or IF – and cycled WD reductions [2, 4, 5].

Recall that a tuple of functions 1 2, , , sf f f is º

reduction of function f , if it is a solution of the equation

1 2 sf x x x namely 1 2 sf f f f . A couple of

functions 1 2, f f be IF reduction of function f if such a

predicate as p exists , that this pair is a solution of the

equation 1 2(, ,)f IF p x x , namely 1 2(, ,). f IF p f f

Also, the function 𝑔 is WD reduction of function f , if

there exists a predicate p such that g is a solution of the

equation ,f WD x p , namely ,f WD g p [6, 9].

A useful necessary condition for WD-reducibility directly

follows from the latter.

Theorem. For the function g to be a WD-reduction of

the function f, the following equality must hold .g f f

After producing the TPS, will demonstrate the method

of programming it using the example of programming the

integer division function : ,div N N N where

 , ,div a b is a natural number that

 , , 1 .b div a b a b div a b To solve this

problem, will use the property of this function:

, & 0

, 1, ,
, |

, 0, 0
a b N b

div a b b a b
div a b

div a b a bor a

Taking into account the orientation of the described

TPS on the nominal data structure and based on the

specified property, we can enrich the div function with its

nominal specification

 , , , : , , , , , , ., , |a a b c NDIV A a B b A a B b C с

From here it is easy to understand that 1 2DIV F F

where 1 0 ,0 ,F C C C

2 : , , , , ,

, , , , , ,

F A a B b C c

A a k b B b C c div a b

where

, & 0,a b N b : 1 .k k b a k b This

specification is an oracle scheme [6] due to the composite

of multiplication.

The F1 obviously, does not require further detailing

and is a so-called "cell reset" , ,0 .С C c C

From F2 it follows directly from the definition that its

WD-reduction will be a function

 : , , , , , { , , , , , 1G A a B b C c A a b B b C c ,

where
,

: , , ,
,

T if a b
P A a B b

F if a b

- nominal

specification of the corresponding predicate. That mean

 2 , .F WD G P This specification is also an oracle

scheme. But due to the WD composite. Without going into

insignificant details, F2 can be represented somewhat

simplified as follows:

 2 (1 , ,F WD A A B C C P A B

respectively

0

(1 , ,

DIV C C

WD A A B C C P A B

.

The simplification is that the given expression is not a

compositional term in its "pure form". Several meta-

expressions are deliberately used along with the means

inherent in the constructed TPS

 0 , , 1 , ,C A A B C C P A B

 .

The goal pursued by this is twofold. First, these

expressions are mnemonically more familiar and at the

same time, their representation in terms of TPS is not

difficult to obtain. Secondly, their use makes it possible to

demonstrate an essential feature of the proposed

programming technology – its ability to take into account

ARS. Strictly speaking, the activity of the programming

subject is not limited to an exhaustive list of tools of any

traditional programming system. On the contrary, the

subject of programming actively influences the core of

TPS, both in terms of the evolution of its concept and at

the stage of encoding the solution. And the meta-

expressions are examples of such influence. Below, what

has been said will be reflected in the description of the

corresponding definer.

As a result of the first stage of technological

development, namely reduction programming, the above-

described specification was obtained in the given system.

Its correctness follows from the construction of the

20-21 October, 2022

Chisinau, Republic of Moldova IC ECCO-2022
The 12th International Conference on

Electronics, Communications and Computing

197

program. After receiving the specification, coding can be

done.

III. CODING AS A SEMANTIC-SYNTACTIC TRANSITION

Most programming languages are the only means of

syntactic notation of programming results. The productive

technology of programming is meaningfully an

implementation of the complementarity of the above-

mentioned basic principles of programming - genetics

(conditionality), subordination and separability, and

targeted creation of a software product [17-19]. It is a

micro-conveyor of stages, where the "programming" stage

realizes the subordination of semantics to pragmatics and

its result is a program - a subject-driven outline of a

problem solution in the form of a corresponding semantic

(composite-compositional) term. [20, 21]. The stage of

"encoding" refers directly to the semantic-syntactic

transition from the semantic specification of the solution

(program) to its code in the form of a corresponding

syntactically correctly written text in a specified

programming language. It has already been noted that the

semantic-syntactic transition can be automated due to the

derivation of the syntactic aspect of programs from the

semantic aspect (principle of subordination). The core of

this process is the corresponding definer of the

programming language [22-26]. Let's apply this to the

DIV function programming example discussed above.

As an example, consider the part of the definer of the

system given above. The definer data is sufficient to

demonstrate the creation of the program. It presents the

corresponding composites and functions with their syntax

notations in a Pascal-like manner (tables 1 and 2).

TABLE I. PROGRAMMING AND CODING PATTERNS

The concept (patterns) of programming The concept (patterns) of coding

... ...

F F

()F F

1 2F F
1 2 ; beginF F end

 1 2 3, , IF F F F
1 2 3 if F thenF elseF 1 2 F F

F X

 :X F

X S X S Y

 1 : 1X Y X

 1 2, WD F F 2 1 whileF doF end

 , P A B
 A B or A B

 1 2 F F 1 2 ;F F

meta

 0

()

(1)

C

A A B

C C

 0

:

: 1

C

A A B

C C

`

TABLE II. BASIC FUNCTIONS AND THEIR CODES

Basic functions Basic function codes

... ...

0 0

+ +

 and

 or

! not

X
 X

X

 X

`

In the presented tables, the notation F, possibly with

indices, Fi, i=1,2,3,... and only these are used as non-

terminal symbols or non-terminals. Similarly, terminal

characters , ,X X X

can also be used with subscripts:

, , , 1,2,3...i i iX X iX

Through them, the recursiveness of constructions is

ensured [22-26]. Concepts of programming and coding

presented in Table 1 represent correctly written words in

the combined alphabet of terminal symbols and non-

terminal symbols. Table 2 lists terminal symbols for basic

operations and their corresponding Pascal-like codes.

Let's turn to the above program. The previously used

additional markup of the program demonstrates its

inherent hierarchical structure. It is due to the step-by-step

implementation of oracle updates in the programming

system, starting from the DIV oracle and ending with the

oracle-free one, that is, the compositional term locked in

the programming system. Moving along this hierarchy,

following the definer fragment specified in Tables 1 and

2, we recursively build a Pascal-like program code (Table

3).

20-21 October, 2022

Chisinau, Republic of Moldova IC ECCO-2022
The 12th International Conference on

Electronics, Communications and Computing

https://doi.org/10.52326/ic-ecco.2022/CS.10

198

TABLE III. EXAMPLES OF PROGRAMS

Program Templates used Updates of non-terminals

0

(1 , ,

DIV C C

WD A A B C C P A B

1 2F F

 1 0F C C

 2 (1 , ,F WD A A B C C P A B

1 2 ; DIV beginF F end

 1 0F C C

11 12F F

X

X

 11

12

1 11 12

0

 ;

F С

F C

F begin F F end

 2 (1 , ,F WD A A B C C P A B

 1 2, WD F F

21

22

2 22 21

1

,

F A A B C C

F P A B

F while F do F end

 21 1F A A B C C

11 12F F

()F

X

X

31

32

21 31 32

1

 ;

F A A B

F C C

F begin F F end

 22 ,F P A B meta 1 2, P F F 22 F A Bor A B

 31F A A B

meta ()A A B

F X

()F

31 :

begin

F A A B

end

 32 1F C C

meta (1))C C

F X

()F

32 : 1

begin

F C C

end

 1 21 22(DIV F WD F F

()F

11 12F F

F X

 1 2, WD F F

meta

 0

()

(1)

C

A A B

C C

31

32

32

:

: 1

end

begin

while A Bor A B do

begin

F A A B

F C C

end

DIV F

IV. CONCLUSIONS

The fundamental role of productive reduction in the

technologization of programming is shown.

It is substantiated that the new paradigm of

programming should be based on the activation of the role

of the programming subject, in which programming is

considered as an activity determined by the program.

It is confirmed that programming technology uses

reduction methods as a means of transforming an

information resource into a software product in

intersubjective TPE.

The reduction determined by the concept plays a

fundamental role in the technologization of programming.

The concept of the software product determines its

semantics, and the syntactic notation of the programming

results determined by the program is completed by one of

the programming languages chosen by the programming

subject.

With the help of reductive programming, a program

specification was obtained in the given system, the

https://doi.org/10.52326/ic-ecco.2022/CS.10

20-21 October, 2022

Chisinau, Republic of Moldova IC ECCO-2022
The 12th International Conference on

Electronics, Communications and Computing

199

correctness of which follows from its construction. Based

on the received specification, the program code is

obtained with the help of definers.

A representative example demonstrates the use of

programming concepts in the form of semantic templates

as links in a program chain that determine certain classes

of programs. A program definer is used, which acts as a

means of translating composites and basic functions of

TPS into their syntactic representation.

The use of meta-expressions in program construction

substantiates the objectivism of the active role of the

subject and determines the place and significance of this

activity in obtaining the result. Metaexpressions do not

belong to the toolkit determined by the intersubjective

programming environment but are the product of the TPS

programmer's conceptualization of the means of achieving

the final goal within the limits of personal competence..

REFERENCES

[1] I. Redko, P. Yahanov, “Conceptual model of the technological

environment of programming”, KPI Science News, vol.1, no.1, pp.

18-26, 2020. DOI: 10.20535/kpi-sn.2020.1.197953.
[2] E. G. Husserl, “Logical Studies. Cartesian Reflections”, Minsk,

Belarusia, 2000.

[3] I. Redko, “Pragmatic foundations of descriptive environments”,
Programming issues, no 3, pp 2-25, (in Russian), 2005.

[4] I. Basarab, N. Nykytchenko, V. Redko. “Composite databases”.

Kyiv: Lybid , 1992. p. 192.
[5] D. I. Redko, I. V. Redko, P. O. Yahanov, T. L. Zakharchenko.

“Compositional basis in programmer activity”, System research

and information technologies, vol. 4, pp. 83-96, 2016.
[6] I. Redko, P. Yahanov and M. Zylevich, "Reduction

conceptualization of oracle schemes,", System research and

information technologies, vol.1, no1, pp.21-33, 2021. doi:
10.20535/SRIT.2308-8893.2021.1.02.

[7] I. Redko, P. Yahanov and M. Zylevich, "Reduction

conceptualization of oracle schemes", 2020 IEEE 2nd
International Conference on System Analysis & Intelligent

Computing (SAIC), Kyiv, Ukraine, pp. 125-130, 2020. DOI:

10.1109/SAIC51296.2020.9239204.

[8] U. Kovaliv, Literary encyclopedia vol 2, Kyiv, Ukraine: Acadenia
(in Ukrainian), 2007.

[9] I. Redko, “Descriptive foundations of programming”, Kibernetika

i sistemnyj analiz, no.1, pp3-19, (in Russian), 2002.
[10] I. Redko, “Foundations of descriptive science”, Kibernetika i

sistemnyj analiz, no.5, pp16-36, (in Russian), 2003.

[11] V. N. Redko, N. V. Grishko, I. V. Redko, “Descriptive systems:
conceptual basis”, Problem of Programming, vol. 2-3, pp. 75-

80,2006.
[12] V. Redko, “Semantic structures of programs”, Programming, vol.

3, pp 3-13, 1979.

[13] D. Bui, V. Redko, “Primitive program algebras”, Programming,
vol. 5, pp 1-7, 1984.

[14] V. Redko, “Program compositions and compositional

programming”, Programming, pp. 3-24, (in Russian), 1978.
[15] V. Redko, “Definitors and the method of definitor processing”,

Kibernetika i sistemnyj analiz, no.6, pp52-56, (in Russian), 1974.

[16] I. Basarab, N. Nykytchenko, V. Redko. “Composite databases,”
Kyiv, Ukraine: Lybid (in Russian), 1992.

[17] V. N. Redko, “Foundations of programmology,” Kibernetika i

sistemnyj analiz, vol. 1, pp. 35-57, (in Russian), 2000.
[18] V. N. Redko, “Basics of compositional programming,”

Programming, vol 3, pp. 3-13, (in Russian), 1979.

[19] F. Brooks, "The Mythical Man-Month: After 20 years," in IEEE
Software, vol. 12, no. 5, pp. 57-60, 1995, doi:

10.1109/MS.1995.10042.

[20] V. N. Redko, N. V. Grishko, I. V. Redko, “Explicit programming
in the environment of logical-mathematical specifications”,

UkrPROG’98,pp71-76, (in Russian), 1998.

[21] V. N. Redko, N. V. Grishko, I. V. Redko, “Explicit programming
in an integration environment”, Problem of Programming, vol. 2,

pp. 59-65, (in Russian), 2004.

[22] D. I. Redko, I. V. Redko, P. O. Yahanov, T. L. Zakharchenko.
“Compositional basis in programmer activity System research and

information technologies, vol. 4, pp. 83-96, 2015.

[23] I. Redko, “Pragmatic foundations of descriptive environments”,
Programming issues, no 3, pp 2-25, (in Russian), 2005.

[24] G. Leibniz, Compositions, Moscow, Russia: Mysl, (in Russian),

1982.
[25] V. Redko, “Interpreted languages and interpreters”, no.5, pp15-21,

(in Russian), 1969.

[26] V. Redko, G. Trubchaninov, “Syntactic definitions: structural
approach”, Programming, no.5, pp. 9-20, (in Russian), 1977.

